Experimental and ab-initio investigation of the electrical conductivity of emeraldine salt

Available
The embargo period has ended, and this item is now available.

Date

2023-03-31

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Physical Chemistry C

Print ISSN

1932-7447

Electronic ISSN

1932-7455

Publisher

American Chemical Society

Volume

127

Issue

14

Pages

6813 - 6824

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
6
views
11
downloads

Series

Abstract

We present an experimental and first-principles study to describe the changes in the electrical conductivity properties of the Emeraldine Salt (ES) form of polyaniline when using two different synthesis methods. The ES powders obtained by the interfacial synthesis method (PANI-I) exhibit higher electrical conductivity than that of the powders obtained by the conventional method (PANI-C). Investigation of the calculated band structure and density of states together with experimentally obtained optical-absorption spectra and the magnetic measurements indicate that PANI-I differs from PANI-C with respect to its localized defect state type which significantly alters the intrinsic conductivity. Furthermore, comparative studies of bond length, dihedral angles, and relative stabilities of Leucomeraldine Base, Emeraldine Base, ES Bipolaron state (ESB), and Polaron state (ESP) indicate that ESB and ESP states might coexist. Additionally, we confirm that increasing the length of the polymer chain to octamer in the unit cell does not influence the relative stability between ESB and ESP defect states.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)