Peptide-mediated constructs of quantum dot nanocomposites for enzymatic control of nonradiative energy transfer

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Nano Letters

Print ISSN

1530-6984

Electronic ISSN

Publisher

American Chemical Society

Volume

11

Issue

4

Pages

1530 - 1539

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

A bottom-up approach for constructing colloidal semiconductor quantum dot (QDot) nanocomposites that facilitate nonradiative Förster-type resonance energy transfer (FRET) using polyelectrolyte peptides was proposed and realized. The electrostatic interaction of these polypeptides with altering chain lengths was probed for thermodynamic, structural, and morphological aspects. The resulting nanocomposite film was successfully cut with the protease by digesting the biomimetic peptide layer upon which the QDot assembly was constructed. The ability to control photoluminescence decay lifetime was demonstrated by proteolytic enzyme activity, opening up new possibilities for biosensor applications.

Course

Other identifiers

Book Title

Citation