On the rational design of core/(multi)-Crown Type-II Heteronanoplatelets
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Solution-processed two-dimensional nanoplatelets (NPLs) allowing lateral growth of a shell (crown) by not affecting the pure confinement in the vertical direction provide unprecedented opportunities for designing heterostructures for light-emitting and -harvesting applications. Here, we present a pathway for designing and synthesizing colloidal type-II core/(multi-)crown hetero-NPLs and investigate their optical properties. Stoke's shifted broad photoluminescence (PL) emission and long PL lifetime (∼few 100 ns) together with our wavefunction calculations confirm the type-II electronic structure in the synthesized CdS/CdSe1-xTexcore/crown hetero-NPLs. In addition, we experimentally obtained the band-offsets between CdS, CdTe, and CdSe in these NPLs. These results helped us designing hetero-NPLs with near-unity PL quantum yield in the CdSe/CdSe1-xTex/CdSe/CdS core/multicrown architecture. These core/multicrown hetero-NPLs have two type-II interfaces unlike traditional type-II NPLs having only one and possess a CdS ending layer for passivation and efficient suppression of stacking required for optoelectronic applications. The light-emitting diode (LED) obtained using multicrown hetero-NPLs exhibits a maximum luminance of 36,612 cd/m2and external quantum efficiency of 9.3%, which outcompetes the previous best results from type-II NPL-based LEDs. These findings may enable designs of future advanced heterostructures of NPLs which are anticipated to show desirable results, especially for LED and lasing platforms. © 2023 American Chemical Society. All rights reserved.