Deterministic positioning of few aqueous colloidal quantum dots

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage18347
dc.citation.issueNumber39
dc.citation.spage18339
dc.citation.volumeNumber16
dc.contributor.authorPambudi, Muhammad Tegar
dc.contributor.authorArora, Deepshikha
dc.contributor.authorLiang, Xiao
dc.contributor.authorSain, Basudeb
dc.contributor.authorRanganath, Anupama Sargur
dc.contributor.authorChua, Matthew R
dc.contributor.authorVu, Cam Nhung
dc.contributor.authorZamiri, Golnoush
dc.contributor.authorRahman, Md. Abdur
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2025-02-22T13:22:17Z
dc.date.available2025-02-22T13:22:17Z
dc.date.issued2024-08-27
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractEmerging quantum technologies that critically require the integration of quantum emitters on photonic platforms are hindered by the control over their position, quantity, and scalability. Herein, we describe a facile strategy to deposit aqueous silica-coated quantum dots (QDs) in a template of polymethyl methacrylate (PMMA) nanoholes that leverages saturated ethanol vapor drop-casting and subsequent lift-off of the template. Ethanol vapor incorporation into water droplets during the drying process reduces the meniscus contact angle, which increases capillary forces and enhances particle confinement within the pinning contact region. Furthermore, induced Marangoni flow controls the particle transport dynamics inside the droplets, making large-scale deposition possible. Controlling the hole diameter of the template demonstrates changes in the number of QDs per hole, which is consistent with the Poissonian distribution with the best results of similar to 40% single-particle yield from an similar to 80% total site occupancy. This method employs a simple setup, eliminating the need for intricate optimization, yet offers the potential for deterministic patterning within complex photonic platforms.
dc.description.provenanceSubmitted by Muhammed Murat Uçar (murat.ucar@bilkent.edu.tr) on 2025-02-22T13:22:17Z No. of bitstreams: 1 Deterministic_positioning_of_few_aqueous_colloidal_quantum_dots.pdf: 1559436 bytes, checksum: 9da37cec2bae085fc0b6484fb9716880 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-22T13:22:17Z (GMT). No. of bitstreams: 1 Deterministic_positioning_of_few_aqueous_colloidal_quantum_dots.pdf: 1559436 bytes, checksum: 9da37cec2bae085fc0b6484fb9716880 (MD5) Previous issue date: 2024-08-27en
dc.identifier.doi10.1039/d4nr02123a
dc.identifier.eissn2040-3372
dc.identifier.issn2040-3364
dc.identifier.urihttps://hdl.handle.net/11693/116638
dc.language.isoEnglish
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://dx.doi.org/10.1039/d4nr02123a
dc.rightsCC BY 3.0 Deed (Attribution 3.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.source.titleNANOSCALE
dc.titleDeterministic positioning of few aqueous colloidal quantum dots
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deterministic_positioning_of_few_aqueous_colloidal_quantum_dots.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: