Driver modeling using a continuous policy space: theory and traffic data validation
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this article, we present a continuous-policy-space game theoretical method for modeling human driver interactions on highway traffic. The proposed method is based on Gaussian Processes and developed as a refinement of the hierarchical decision-making concept called “level- k reasoning” that conventionally assigns discrete levels of behaviors to agents. Conventional level- k reasoning approach may pose undesired constraints for predicting human decision making due to a limited number (usually 2 or 3) of driver policies it provides. To fill this gap in the literature, we expand the framework to a continuous domain that enables a continuous-policy-space, consisting of infinitely many driver policies. Through the approach detailed in this article, more accurate and realistic driver models can be obtained and employed for creating high-fidelity simulation platforms for the validation of autonomous vehicle control algorithms. We validate the proposed method on a traffic dataset and compare it with the conventional level- k approach to demonstrate its contributions and implications.