Connections of the dentate nucleus with the amygdala: Experimental rat and human 3-tesla tractography study

Date

2022-12-13

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Brain Connectivity

Print ISSN

2158-0014

Electronic ISSN

2158-0022

Publisher

Mary Ann Liebert, Inc. Publishers

Volume

12

Issue

10

Pages

905 - 913

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Background: The role of the cerebellum in motor function is well recognized. However, its role in higher nervous system activities such as cognition, emotion, endocrine, and autonomic activities is less known. The present study aims to show direct dento-amygdala projections using a biotinylated dextran amine (BDA) tracer in rats and 3-tesla (T) high-resolution diffusion tensor imaging (DTI)-based tractography in humans. Materials and Methods: The BDA tracer was pressure injected into the dentate nucleus of the cerebellum of Wistar albino rats. Labeled cells and axons were documented. High-resolution 3-T tractography data were obtained from the Human Connectome Project database. Dento-amygdala tracts were analyzed using diffusion spectrum imaging (DSI) Studio software. Results: The experimental study showed bilateral projections between the dentate nucleus and the central and basal nuclei and ipsilateral projections between lateral nuclei of the amygdala. The fibers from the dentate nucleus reached the amygdala through the superior cerebellar peduncle (SCP), and the contralateral fibers crossed in the decussation of SCP at the midbrain. The dento-amygdala results of the experimental study corresponded with the 3-T tractography findings on humans. Additionally, DTI findings showed that most of the dentate fibers passed through the hypothalamus before reaching the amygdala, and the amygdalae of the two sides are connected through the anterior commissure. Discussion: The 3-T DTI data of adult humans showed both direct dento-amygdala and indirect dento-hypothalamo-amygdala projections. Thus, this may indicate cerebellar contribution in modulation of emotional and autonomic functions. Furthermore, this can explain the emotional and cognitive deficits that occur in patients with cerebellar or SCP damage.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)