Well parameters of two-dimensional electron gas in Al0.88In 0.12N/AlN/GaN/AlN heterostructures grown by MOCVD

Series

Abstract

Resistivity and Hall effect measurements were carried out as a function of magnetic field (0-1.5 T) and temperature (30-300 K) for Al0.88In 0.12N/AlN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition (MOCVD). Magnetic field dependent Hall data were analyzed by using the quantitative mobility spectrum analysis (QMSA). A two-dimensional electron gas (2DEG) channel located at the Al0.88In 0.12N/GaN interface with an AlN interlayer and a two-dimensional hole gas (2DHG) channel located at the GaN/AlN interface were determined for Al 0.88In0.12N/AlN/GaN/AlN heterostructures. The interface parameters, such as quantum well width, the deformation potential constant and correlation length as well as the dominant scattering mechanisms for the Al 0.88In0.12N/GaN interface with an AlN interlayer were determined from scattering analyses based on the exact 2DEG carrier density and mobility obtained with QMSA

Source Title

Crystal Research and Technology

Publisher

Wiley

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English