Detection and quantification of seasonal human heat and cold stress frequencies in representative existing and future urban canyons: the case of Ankara
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Based upon a ‘human-centred approach’, combinations of existing and new methodologies were applied to determine how Ankara’s morphological characteristics influenced the magnitude/frequency of Cold Stress (CS) and Heat Stress (HS) to detect/quantify seasonal and yearly human thermal stress frequency. To quantify these conditions upon the human biometeorological system, the Physiologically Equivalent Temperature (PET) was utilised by processing climatic variables from Ankara’s Meteorological Station (AMS). In situ assessments of human thermophysiological thresholds were undertaken within characteristic existing/future Urban Canyon Cases (UCCs), with a further stipulation of three interior Reference Points (RPs). Indoor PET values were moreover calculated within a stereotypical vulnerable residential dwelling. Seasonal frequencies revealed that winter PET values frequently ranged between 0.0 and − 19.9 °C, with corresponding summer values frequently ranging between 35.1 and 46.0 °C. Accounting for Ankara’s urban morphology, yearly frequency of No Thermal Stress remained at ~ 48%, CS remained at ~ 26%, and HS ~ 28%. HS varied the most between the eight evaluated Aspect Ratios (ARs). It reduced by up to 7.1% (114 min) within the Centre (RP