Determination of current transport and trap states density in AlInGaN/GaN heterostructures

Available
The embargo period has ended, and this item is now available.

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
43
downloads

Citation Stats

Series

Abstract

The energy distribution and the relaxation time constant of the trap states with respect to conduction bands in the (Ni/Au) Schottky contact on AlInGaN/GaN heterostructures were investigated using the admittance technique. The potential dependent capacitance/conductance measurements were done in the frequency range of 5 kHz to 5 MHz at a temperature of 300 K. We found strong frequency dispersions at the accumulation regions and at the sharp transition regions (depletion region) in the capacitance curves. High frequency dispersion at the accumulation regions in C-V characteristics indicates that there is a high-density of surface traps between the metal–AlInGaN quaternary layer interfaces. Furthermore, the frequency dispersion at the sharp transition regions behavior can be attributed to the interface traps state between the AlInGaN quaternary layer and GaN layer. A detailed analysis of the frequency-dependent capacitance and conductance data was performed, assuming the models in which traps are located between the metal–AlInGaN interface (surface traps) and between AlInGaN/GaN interfaces (interface traps). The trap states density and time constants of the traps states were calculated as a function of energy separation from the conduction-band edge. The trap states' densities change between 1.3 × 1011 eV−1 cm−2 and 6.2 × 1011 eV−1 cm−2. Also, 4.8 to 5.3 μs time interval calculated for the relaxation times.

Source Title

Microelectronics ReliabilityMicroelectronics Reliability

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English