Design and synthesis of monosaccharide functionalized conjugated polymers, polyrotaxanes and oligomers for biological applications

Available
The embargo period has ended, and this item is now available.

Date

2015-09

Editor(s)

Advisor

Tuncel, Dönüş

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
19
downloads

Series

Abstract

In this work, the design, synthesis and characterization of fluorescent, water-soluble, multivalent glycoconjugates for their potential applications in active-targetted cellular theranostics through receptor-mediated endocytosis are presented. Gluco-functionalized thiophene monomers are utilized for the pre-functionalized Suzuki coupling polymerization of glycopolythiophenes and glycopolythiophenerotaxanes. The pre-functionalized glycopolythiophenerotaxane synthesis route was designed to provide in situ complexation between boronic ester thiophene monomer and water-soluble macrocycle cucurbit[7]uril, for the Suzuki coupling with the glycothiophene monomer in water. Red emitting oligomers carrying azide groups were utilized for the synthesis of post-functionalized glycoconjugate oligomers. These functionalizations were carried through 1,3-dipolar cycloaddition (click reaction) between azide groups and alkyne-functionalized monosaccharides (mannose or glucose). Structural and photophysical properties of glycopolythiophenes were investigated through ¹H-NMR, UV-VIS, and Fluorescence Spectroscopy. Monomers in synthetic steps were analysed through ¹H-NMR, IR, and ¹³C-NMR. Structural, photophysical and morphological properties of red oligomers were investigated through ¹H-NMR, HRMS-TOF, DLS, SEM.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Chemistry

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type

Thesis