Flexible metamaterials for wireless strain sensing
buir.contributor.author | Demir, Hilmi Volkan | |
buir.contributor.orcid | Demir, Hilmi Volkan|0000-0003-1793-112X | |
dc.citation.epage | 181105-3 | en_US |
dc.citation.issueNumber | 18 | en_US |
dc.citation.spage | 181105-1 | en_US |
dc.citation.volumeNumber | 95 | en_US |
dc.contributor.author | Melik, R. | en_US |
dc.contributor.author | Unal, E. | en_US |
dc.contributor.author | Perkgoz, N. K. | en_US |
dc.contributor.author | Puttlitz, C. | en_US |
dc.contributor.author | Demir, Hilmi Volkan | en_US |
dc.date.accessioned | 2016-02-08T10:01:49Z | |
dc.date.available | 2016-02-08T10:01:49Z | |
dc.date.issued | 2009-11-04 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Department of Physics | en_US |
dc.description.abstract | We proposed and demonstrated flexible metamaterial-based wireless strain sensors that include arrays of split ring resonators (SRRs) to telemetrically measure strain. For these metamaterial sensors, we showed that a flexible substrate (e.g., Kapton tape) delivers greater sensitivity and a more linear response as compared to using silicon substrates. Specifically, these tape-based flexible SRR sensors exhibit a significantly improved sensitivity level of 0.292 MHz/kgf with a substantially reduced nonlinearity error of 3% for externally applied mechanical loads up to 250 kgf. These data represent a sixfold increase in sensitivity and a 16-fold reduction in error percentage. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:01:49Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1063/1.3250175 | en_US |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/11693/22568 | |
dc.language.iso | English | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.3250175 | en_US |
dc.source.title | Applied Physics Letters | en_US |
dc.subject | Error percentage | en_US |
dc.subject | Flexible substrate | en_US |
dc.subject | Linear response | en_US |
dc.subject | Mechanical loads | en_US |
dc.subject | Non-linearity errors | en_US |
dc.subject | Silicon substrates | en_US |
dc.subject | Split ring resonator | en_US |
dc.subject | Strain sensing | en_US |
dc.subject | Strain sensors | en_US |
dc.subject | Electronic equipment | en_US |
dc.subject | Polyimides | en_US |
dc.subject | Ring gages | en_US |
dc.subject | Sensors | en_US |
dc.subject | Substrates | en_US |
dc.subject | Metamaterials | en_US |
dc.title | Flexible metamaterials for wireless strain sensing | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Flexible metamaterials for wireless strain sensing.pdf
- Size:
- 563.65 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version