Nonradiative energy transfer in colloidal CdSe nanoplatelet films

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage2551en_US
dc.citation.issueNumber6en_US
dc.citation.spage2545en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorGüzeltürk, B.en_US
dc.contributor.authorOlutas M.en_US
dc.contributor.authorDelikanlı, S.en_US
dc.contributor.authorKeleştemur, Y.en_US
dc.contributor.authorErdem, O.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2016-02-08T10:21:29Z
dc.date.available2016-02-08T10:21:29Z
dc.date.issued2015en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractNonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy. NRET takes place from the NPLs with smaller vertical thickness (i.e., larger band gap) to the ones with a larger vertical thickness (i.e., smaller band gap) with efficiency up to ∼60%. Here, we reveal that the NRET efficiency is limited in these NPL solid film assemblies due to the self-stacking of NPLs within their own population causing an increased distance between the donor-acceptor pairs, which is significantly different to previously studied colloidal quantum dot based architectures for nonradiative energy transfer. © The Royal Society of Chemistry 2015.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:21:29Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1039/c4nr06003ben_US
dc.identifier.issn2040-3364
dc.identifier.urihttp://hdl.handle.net/11693/23936
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c4nr06003ben_US
dc.source.titleNanoscaleen_US
dc.subjectEnergy gapen_US
dc.subjectEnergy transferen_US
dc.subjectLaser spectroscopyen_US
dc.subjectNanocrystalsen_US
dc.subjectNanorodsen_US
dc.subjectSemiconductor quantum wiresen_US
dc.subjectColloidal nanocrystalsen_US
dc.subjectColloidal quantum dotsen_US
dc.subjectColloidal quantum wellsen_US
dc.subjectDonor - acceptor pairsen_US
dc.subjectNonradiative energy transferen_US
dc.subjectSolid thin filmsen_US
dc.subjectSpectroscopic evidenceen_US
dc.subjectTime - reresolved spectroscopyen_US
dc.subjectSemiconductor quantum dotsen_US
dc.titleNonradiative energy transfer in colloidal CdSe nanoplatelet filmsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nonradiative energy transfer in colloidal CdSe nanoplatelet films.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
Description:
Full printable version