Probing viscosity via relaxation in magnetic particle imaging

Available
The embargo period has ended, and this item is now available.

Date

2017-01

Editor(s)

Advisor

Sarıtaş, Emine Ülkü

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
7
downloads

Series

Abstract

Magnetic Particle Imaging (MPI) is a high-contrast imaging modality with applications such as angiography, stem cell tracking, and cancer imaging. In recent years, MPI was shown to be a potential functional imaging modality through \color MPI" techniques, where responses from different nanoparticles can be distinguished. These techniques can be extended to differentiate environmental conditions or states such as different viscosities. Increased viscosity in vivo was shown to be related with various diseases such as hypertension, atherosclerosis, and cancer. Through color MPI techniques, MPI shows a great promise for mapping viscosity and for helping in the diagnosis of these important diseases. This thesis demonstrates the capability of MPI to map viscosities through an estimation of relaxation time constant of nanoparticles. This capability is verified through an extensive experimental work with a magnetic particle spectrometer (MPS) setup that is custom designed. These experiments are conducted for the biologically important viscosity range between 0.89 mPa.s and 15.33 mPa.s, at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field amplitudes (between 5 mT and 15 mT). The results demonstrate MPI's viscosity mapping capability in a biological range.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)