CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving

buir.contributor.authorBıyıklı, Necmi
dc.citation.epage115011-9en_US
dc.citation.issueNumber11en_US
dc.citation.spage115011-1en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorSerhatlioglu, M.en_US
dc.contributor.authorOrtaç, B.en_US
dc.contributor.authorElbuken, C.en_US
dc.contributor.authorBıyıklı, Necmien_US
dc.contributor.authorSolmaz, M. E.en_US
dc.date.accessioned2018-04-12T10:44:59Z
dc.date.available2018-04-12T10:44:59Z
dc.date.issued2016-10en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:44:59Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1088/0960-1317/26/11/115011en_US
dc.identifier.issn0960-1317
dc.identifier.urihttp://hdl.handle.net/11693/36580
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1088/0960-1317/26/11/115011en_US
dc.source.titleJournal of Micromechanics and Microengineeringen_US
dc.subjectCO2 laseren_US
dc.subjectFemtosecond laser machiningen_US
dc.subjectMicrofluidicsen_US
dc.subjectPolishingen_US
dc.subjectSurface characterizationen_US
dc.subjectAtomic force microscopyen_US
dc.subjectCarbon dioxideen_US
dc.subjectFabricationen_US
dc.subjectFilled polymersen_US
dc.subjectFluidic devicesen_US
dc.subjectFused silicaen_US
dc.subjectGeometrical opticsen_US
dc.subjectImaging techniquesen_US
dc.subjectIrradiationen_US
dc.subjectMicrofluidicsen_US
dc.subjectMicromachiningen_US
dc.subjectOptical image storageen_US
dc.subjectPolishingen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSurface roughnessen_US
dc.subjectUltrashort pulsesen_US
dc.subjectFemtosecond laser machiningen_US
dc.subjectGlass micromachiningen_US
dc.subjectLow repetition rateen_US
dc.subjectLow surface roughnessen_US
dc.subjectMicrofluidic channelen_US
dc.subjectMicroscopic structuresen_US
dc.subjectPolishing techniquesen_US
dc.subjectSurface characterizationen_US
dc.subjectPulsed lasersen_US
dc.titleCO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carvingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CO2_laser_polishing_of_microfluidic_channels_fabricated by_femtosecond_laser_assisted_carving.pdf
Size:
3.02 MB
Format:
Adobe Portable Document Format
Description:
Full printable version