Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations

buir.contributor.authorDurgun, Engin
dc.citation.epage14733en_US
dc.citation.issueNumber27en_US
dc.citation.spage14726en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorManzano, H.en_US
dc.contributor.authorDurgun, Enginen_US
dc.contributor.authorArbeloa, I. L.en_US
dc.contributor.authorGrossman, J. C.en_US
dc.date.accessioned2016-02-08T09:46:44Z
dc.date.available2016-02-08T09:46:44Z
dc.date.issued2015en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractHydration of mineral surfaces, a critical process for many technological applications, encompasses multiple coupled chemical reactions and topological changes, challenging both experimental characterization and computational modeling. In this work, we used reactive force field simulations to understand the surface properties, hydration, and dissolution of a model mineral, tricalcium silicate. We show that the computed static quantities, i.e., surface energies and water adsorption energies, do not provide useful insight into predict mineral hydration because they do not account for major structural changes at the interface when dynamic effects are included. Upon hydration, hydrogen atoms from dissociated water molecules penetrate into the crystal, forming a disordered calcium silicate hydrate layer that is similar for most of the surfaces despite wide-ranging static properties. Furthermore, the dynamic picture of hydration reveals the hidden role of surface topology, which can lead to unexpected water tessellation that stabilizes the surface against dissolution.en_US
dc.identifier.doi10.1021/acsami.5b02505en_US
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/11693/21469
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acsami.5b02505en_US
dc.source.titleACS Applied Materials and Interfacesen_US
dc.subjectDissolutionen_US
dc.subjectHydrationen_US
dc.subjectMolecular dynamicsen_US
dc.subjectSurface propertiesen_US
dc.subjectWater adsorptionen_US
dc.subjectCalcium silicateen_US
dc.titleInsight on tricalcium silicate hydration and dissolution mechanism from molecular simulationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations.pdf
Size:
4.65 MB
Format:
Adobe Portable Document Format
Description:
Full printable version