Selective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition

buir.contributor.authorUyar, Tamer
buir.contributor.authorBıyıklı, Necmi
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481
dc.citation.epage5745en_US
dc.citation.issueNumber11en_US
dc.citation.spage5735en_US
dc.citation.volumeNumber6en_US
dc.contributor.authorKayaci, F.en_US
dc.contributor.authorVempati S.en_US
dc.contributor.authorOzgit Akgun, C.en_US
dc.contributor.authorDonmez, I.en_US
dc.contributor.authorBıyıklı, Necmien_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2015-07-28T12:02:57Z
dc.date.available2015-07-28T12:02:57Z
dc.date.issued2014-02-06en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractHeterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO 2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:02:57Z (GMT). No. of bitstreams: 1 8427.pdf: 1765408 bytes, checksum: bbfa94d6695732f4f02bfb9dd4e537d2 (MD5)en
dc.identifier.doi10.1039/C3NR06665Gen_US
dc.identifier.issn2040-3364
dc.identifier.urihttp://hdl.handle.net/11693/12778
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C3NR06665Gen_US
dc.source.titleNanoscaleen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCatalystsen_US
dc.subjectDepositionen_US
dc.subjectElectronsen_US
dc.subjectElectrospinningen_US
dc.subjectNanofibersen_US
dc.subjectOxygen vacanciesen_US
dc.subjectPhotocatalysisen_US
dc.subjectCore-shell heterojunctionsen_US
dc.subjectAssociated mechanismen_US
dc.subjectPhotocatalytic activitiesen_US
dc.titleSelective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer depositionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Selective_isolation_of_the_electron_or_hole_in_photocatalys_ZnO_–_TiO2_and_TiO2_–_ZnO_core_–_shell_structured_heterojunction_nanofibers_via_electrospinning_and_atomic_layer_deposition.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
Full printable version