Aspects of multivariable operator theory on weighted symmetric Fock spaces
dc.citation.epage | 1350034-49 | en_US |
dc.citation.issueNumber | 5 | en_US |
dc.citation.spage | 1350034-1 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Kaptanoğlu, H. T. | en_US |
dc.date.accessioned | 2016-02-08T11:02:40Z | |
dc.date.available | 2016-02-08T11:02:40Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We obtain all Dirichlet spaces Fq, q ∈ ℝ, of holomorphic functions on the unit ball of ℂN as weighted symmetric Fock spaces over ℂN. We develop the basics of operator theory on these spaces related to shift operators. We do a complete analysis of the effect of q ∈ ℝ in the topics we touch upon. Our approach is concrete and explicit. We use more function theory and reduce many proofs to checking results on diagonal operators on the Fq. We pick out the analytic Hilbert modules from among the Fq. We obtain von Neumann inequalities for row contractions on a Hilbert space with respect to each Fq. We determine the commutants and investigate the almost normality of the shift operators. We prove that the C∗-algebras generated by the shift operators on the Fq fit in exact sequences that are in the same Ext class. We identify the groups K0 and K1 of the Toeplitz algebras on the Fq arising in K-theory. Radial differential operators are prominent throughout. Some of our results, especially those pertaining to lower negative values of q, are new even for N = 1. Many of our results are valid in the more general weighted symmetric Fock spaces Fb that depend on a weight sequence b. © World Scientific Publishing Company. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:02:40Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1142/S021919971350034X | en_US |
dc.identifier.eissn | 1793-6683 | |
dc.identifier.issn | 0219-1997 | |
dc.identifier.uri | http://hdl.handle.net/11693/26637 | |
dc.language.iso | English | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1142/S021919971350034X | en_US |
dc.source.title | Communications in Contemporary Mathematics | en_US |
dc.subject | Analytic Hilbert module | en_US |
dc.subject | Bergman | en_US |
dc.subject | Busby invariant | en_US |
dc.subject | Commutant | en_US |
dc.subject | C∗-algebra | en_US |
dc.subject | Dirichlet | en_US |
dc.subject | Drury-Arveson | en_US |
dc.subject | Extension | en_US |
dc.subject | Fock | en_US |
dc.subject | Fredholm | en_US |
dc.subject | Hardy | en_US |
dc.subject | hyponormal | en_US |
dc.subject | K-groups | en_US |
dc.subject | multiplier | en_US |
dc.subject | Radial differential operator | en_US |
dc.subject | Reproducing kernel Hilbert space | en_US |
dc.subject | Row contraction | en_US |
dc.subject | Shift | en_US |
dc.subject | Short exact sequence | en_US |
dc.subject | Spectrum | en_US |
dc.subject | Subnormal | en_US |
dc.subject | Toeplitz | en_US |
dc.subject | Virtual point | en_US |
dc.subject | Vvon Neumann inequality | en_US |
dc.subject | 47A13 | en_US |
dc.subject | 47B32 | en_US |
dc.subject | 19K33 | en_US |
dc.subject | 32A36 | en_US |
dc.subject | 32A37 | en_US |
dc.subject | 46E20 | en_US |
dc.subject | 46E22 | en_US |
dc.subject | 46L08 | en_US |
dc.subject | 47A20 | en_US |
dc.subject | 47A30 | en_US |
dc.subject | 47A53 | en_US |
dc.subject | 47B35 | en_US |
dc.subject | 47B37 | en_US |
dc.subject | 47B38 | en_US |
dc.subject | 47C15 | en_US |
dc.title | Aspects of multivariable operator theory on weighted symmetric Fock spaces | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Aspects of multivariable operator theory on weighted symmetric Fock spaces.pdf
- Size:
- 621.12 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version