Aspects of multivariable operator theory on weighted symmetric Fock spaces

Date

2014

Authors

Kaptanoğlu, H. T.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Communications in Contemporary Mathematics

Print ISSN

0219-1997

Electronic ISSN

1793-6683

Publisher

World Scientific Publishing

Volume

16

Issue

5

Pages

1350034-1 - 1350034-49

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
9
downloads

Series

Abstract

We obtain all Dirichlet spaces Fq, q ∈ ℝ, of holomorphic functions on the unit ball of ℂN as weighted symmetric Fock spaces over ℂN. We develop the basics of operator theory on these spaces related to shift operators. We do a complete analysis of the effect of q ∈ ℝ in the topics we touch upon. Our approach is concrete and explicit. We use more function theory and reduce many proofs to checking results on diagonal operators on the Fq. We pick out the analytic Hilbert modules from among the Fq. We obtain von Neumann inequalities for row contractions on a Hilbert space with respect to each Fq. We determine the commutants and investigate the almost normality of the shift operators. We prove that the C∗-algebras generated by the shift operators on the Fq fit in exact sequences that are in the same Ext class. We identify the groups K0 and K1 of the Toeplitz algebras on the Fq arising in K-theory. Radial differential operators are prominent throughout. Some of our results, especially those pertaining to lower negative values of q, are new even for N = 1. Many of our results are valid in the more general weighted symmetric Fock spaces Fb that depend on a weight sequence b. © World Scientific Publishing Company.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)