Tuning electronic properties of monolayer hexagonal boron phosphide with group III-IV-V dopants
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
An extensive study on doping of two-dimensional (2D) hexagonal boron phosphide (h-BP) which is a direct band gap semiconductor was performed by using ab initio methods based on spin-polarized density functional theory. The interaction of group III-IV-V elements with h-BP is explored, considering both adsorption and substitution cases, and the resulting structural and electronic properties are examined. The variation of adsorption (substitution) energies and band gap values are systematically analyzed and trends are identified. Upon adsorption, the most of the elements bound on top of P atom forming dumbbell geometry which generates characteristic spin-polarized impurity states. The substitution of B or P by group III-IV-V elements can produce extra electrons/holes which lead to n-type and p-type doping for adequate cases. Additionally, doping can further generate impurity resonant states. Functionalization of h-BP with adatoms can tune the electronic structure and would be useful for nanoelectronic applications in low-dimensions.