Extension problem and bases for spaces of infinitely differentiable functions

buir.advisorGoncharov, Alexander
dc.contributor.authorMerpez, Zeliha Ural
dc.date.accessioned2017-04-10T08:43:15Z
dc.date.available2017-04-10T08:43:15Z
dc.date.copyright2017-04
dc.date.issued2017-04
dc.date.submitted2017-04-07
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Ph.D.): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2017.en_US
dc.descriptionIncludes bibliographical references (leaves 71-73).en_US
dc.description.abstractWe examine the Mityagin problem: how to characterize the extension property in geometric terms. We start with three methods of extension for the spaces of Whitney functions. One of the methods was suggested by B. S. Mityagin: to extend individually the elements of a topological basis. For the spaces of Whitney functions on Cantor sets K( ), which were introduced by A. Goncharov, we construct topological bases. When the set K( ) has the extension property, we construct a linear continuous extension operator by means of suitable individual extensions of basis elements. Moreover, we use local Newton interpolations to contruct an extension operator. In the end, we show that for the spaces of Whitney functions, there is no complete characterization of the extension property in terms of Hausdorff measures or growth of Markov's factors.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2017-04-10T08:43:14Z No. of bitstreams: 1 10144446.pdf: 504606 bytes, checksum: b52344d23a46ea0d3bed516dde1bbb51 (MD5)en
dc.description.provenanceMade available in DSpace on 2017-04-10T08:43:15Z (GMT). No. of bitstreams: 1 10144446.pdf: 504606 bytes, checksum: b52344d23a46ea0d3bed516dde1bbb51 (MD5) Previous issue date: 2017-04en
dc.description.statementofresponsibilityby Zeliha Ural Merpez.en_US
dc.format.extentviii, 73 leaves.en_US
dc.identifier.itemidB155378
dc.identifier.urihttp://hdl.handle.net/11693/32954
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWhitney functionsen_US
dc.subjectExtension operatoren_US
dc.subjectTopological basesen_US
dc.subjectHausdorff measuresen_US
dc.subjectMarkov factorsen_US
dc.titleExtension problem and bases for spaces of infinitely differentiable functionsen_US
dc.title.alternativeSonsuz türevlenebilir fonksiyon uzayları için genişletme problemi ve tabanlaren_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10144446.pdf
Size:
492.78 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: