Extension problem and bases for spaces of infinitely differentiable functions
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We examine the Mityagin problem: how to characterize the extension property in geometric terms. We start with three methods of extension for the spaces of Whitney functions. One of the methods was suggested by B. S. Mityagin: to extend individually the elements of a topological basis. For the spaces of Whitney functions on Cantor sets K( ), which were introduced by A. Goncharov, we construct topological bases. When the set K( ) has the extension property, we construct a linear continuous extension operator by means of suitable individual extensions of basis elements. Moreover, we use local Newton interpolations to contruct an extension operator. In the end, we show that for the spaces of Whitney functions, there is no complete characterization of the extension property in terms of Hausdorff measures or growth of Markov's factors.