Fibre products of superelliptic curves and codes therefrom

dc.citation.spage413en_US
dc.contributor.authorStepanov, Serguei A.en_US
dc.contributor.authorÖzbudak, Ferruhen_US
dc.coverage.spatialUlm, Germanyen_US
dc.date.accessioned2016-02-08T12:00:00Z
dc.date.available2016-02-08T12:00:00Z
dc.date.issued1997en_US
dc.departmentDepartment of Mathematicsen_US
dc.descriptionDate of Conference: 29 June-4 July 1997en_US
dc.descriptionConference Name: IEEE International Symposium on Information Theory, IEEE 1997en_US
dc.description.abstractA method of constructing long geometric Goppa codes coming from fiber products of superelliptic curves is presented. A family of smooth projective curves with a lot of Fq-rational points are needed to produce a family of asymptotically good geometric Goppa codes. The genus in every such family is considerably less than the number of rational points, so the corresponding geometric Goppa codes have rather good parameters. Examples of such families are provided by modular curves, by Drinfeld modular curves, and by Artin-Schreier coverings of the projective line.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:00:00Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1997en
dc.identifier.doi10.1109/ISIT.1997.613350en_US
dc.identifier.urihttp://hdl.handle.net/11693/27709en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/ISIT.1997.613350en_US
dc.source.titleProceedings of the IEEE International Symposium on Information Theory, IEEE 1997en_US
dc.subjectAlgorithmsen_US
dc.subjectDecodingen_US
dc.subjectPolynomialsen_US
dc.subjectVectorsen_US
dc.subjectSmooth projective curvesen_US
dc.subjectSuperelliptic curvesen_US
dc.subjectCodes (symbols)en_US
dc.titleFibre products of superelliptic curves and codes therefromen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fibre products of superelliptic curves and codes therefrom.pdf
Size:
102.64 KB
Format:
Adobe Portable Document Format
Description:
Full printable version