Fibre products of superelliptic curves and codes therefrom
Date
1997
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
3
views
views
22
downloads
downloads
Citation Stats
Series
Abstract
A method of constructing long geometric Goppa codes coming from fiber products of superelliptic curves is presented. A family of smooth projective curves with a lot of Fq-rational points are needed to produce a family of asymptotically good geometric Goppa codes. The genus in every such family is considerably less than the number of rational points, so the corresponding geometric Goppa codes have rather good parameters. Examples of such families are provided by modular curves, by Drinfeld modular curves, and by Artin-Schreier coverings of the projective line.
Source Title
Proceedings of the IEEE International Symposium on Information Theory, IEEE 1997
Publisher
IEEE
Course
Other identifiers
Book Title
Degree Discipline
Degree Level
Degree Name
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English