Aspects of computational homogenization in magneto-mechanics: Boundary conditions, RVE size and microstructure composition
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In the present work, the behavior of heterogeneous magnetorheological composites subjected to large deformations and external magnetic fields is studied. Computational homogenization is used to derive the macroscopic material response from the averaged response of the underlying microstructure. The microstructure consists of two materials and is far smaller than the characteristic length of the macroscopic problem. Different types of boundary conditions based on the primary variables of the magneto-elastic enthalpy and internal energy functionals are applied to solve the problem at the micro-scale. The overall responses of the RVEs with different sizes and particle distributions are studied under different loads and magnetic fields. The results indicate that the application of each set of boundary conditions presents different macroscopic responses. However, increasing the size of the RVE, solutions from different boundary conditions get closer to each other and converge to the response obtained from periodic boundary conditions.