Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry
buir.contributor.author | Demir, Hilmi Volkan | |
buir.contributor.orcid | Demir, Hilmi Volkan|0000-0003-1793-112X | |
dc.citation.epage | 114002 | en_US |
dc.citation.issueNumber | 11 | en_US |
dc.citation.spage | 114002 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Zhou, X. | en_US |
dc.contributor.author | Soppera, O. | en_US |
dc.contributor.author | Plain, J. | en_US |
dc.contributor.author | Jradi, S. | en_US |
dc.contributor.author | Sun, X. W. | en_US |
dc.contributor.author | Demir, Hilmi Volkan | en_US |
dc.contributor.author | Yang, X. | en_US |
dc.contributor.author | Deeb, C. | en_US |
dc.contributor.author | Gray, S. K. | en_US |
dc.contributor.author | Wiederrecht, G. P. | en_US |
dc.contributor.author | Bachelot, R. | en_US |
dc.date.accessioned | 2015-07-28T12:02:33Z | |
dc.date.available | 2015-07-28T12:02:33Z | |
dc.date.issued | 2014-11-03 | en_US |
dc.department | Department of Physics | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | Hybrid nanomaterials are targeted by a rapidly growing group of nanooptics researchers, due to the promise of optical behavior that is difficult or even impossible to create with nanostructures of homogeneous composition. Examples of important areas of interest include coherent coupling, Fano resonances, optical gain, solar energy conversion, photocatalysis, and nonlinear optical interactions. In addition to the coupling interactions, the strong dependence of optical resonances and damping on the size, shape, and composition of the building blocks provides promise that the coupling interactions of hybrid nanomaterials can be controlled and manipulated for a desired outcome. Great challenges remain in reliably synthesizing and characterizing hybrid nanomaterials for nanooptics. In this review, we describe the synthesis, characterization, and applications of hybrid nanomaterials created through plasmon-induced photopolymerization. The work is placed within the broader context of hybrid nanomaterials involving plasmonic metal nanoparticles and molecular materials placed within the length scale of the evanescent field from the metal surface. We specifically review three important applications of free radical photopolymerization to create hybrid nanoparticles: local field probing, photoinduced synthesis of advanced hybrid nanoparticles, and nanophotochemistry. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T12:02:33Z (GMT). No. of bitstreams: 1 8245.pdf: 3309896 bytes, checksum: ca3c163e46d468d894407d3ebf723d5f (MD5) | en |
dc.identifier.doi | 10.1088/2040-8978/16/11/114002 | en_US |
dc.identifier.eissn | 2040-8986 | |
dc.identifier.issn | 0972-8821 | |
dc.identifier.uri | http://hdl.handle.net/11693/12677 | |
dc.language.iso | English | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1088/2040-8978/16/11/114002 | en_US |
dc.source.title | Journal of Optics | en_US |
dc.subject | Nanoplasmonics | en_US |
dc.subject | Free-radical Photopolymerization | en_US |
dc.subject | Nanophotochemistry | en_US |
dc.subject | Hybrid Plasmonics | en_US |
dc.subject | Localized Surface-plasmon | en_US |
dc.subject | Noble-metal Nanoparticles | en_US |
dc.subject | Photochemical-reactions | en_US |
dc.subject | Resonance Spectroscopy | en_US |
dc.subject | Gold Nanoparticles | en_US |
dc.title | Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Plasmon-based_photopolymerization_nearfield_probing,_advanced_photonic_nanostructures_and_nanophotochemistry.pdf
- Size:
- 3.16 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version