Leveraging large-scale data for supply chain network design: a location-allocation model for Rwanda

Date

2024-08

Editor(s)

Advisor

Kocaman, Ayşe Selin

Supervisor

Co-Advisor

Martinez, Pablo Duenas

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
16
views
31
downloads

Series

Abstract

Clean cooking strategies are significant contributors to the enhancement of development and sustainability. Regarding the lower emission levels compared to biomass usage, we consider Liquefied Petroleum Gas (LPG) a clean cooking strategy to promote, especially in developing countries. Hence, we design large-scale supply chain operations for the LPG distribution in Rwanda. This involves addressing the location-allocation problem of facilities by utilizing a large dataset on the location and LPG demand of each rooftop by formulating a Mixed-Integer Linear Programming (MILP) model. In order to decrease the size of the problem, we propose three methods. First of all, we design the system independent of time index. Next, we use the agglomerative hierarchical clustering-based heuristic approach to cluster the rooftops and locate retailers on the distance-constrained geomedian point of each cluster. Finally, we propose to decompose the formulated MILP model to get adequate solutions in less time. For computational analysis, we compare the system configurations with different retailer locations obtained by the village centroid approach and agglomerative hierarchical clustering based-heuristic approach. In addition, we investigate whether the existing system configuration can be extended when the projected increase in yearly LPG demand is introduced. Moreover, we conduct a sensitivity analysis to show the trade-off between the infrastructure and transportation costs due to the volatility in diesel fuel prices. Finally, we compare the results and performances of the main model and the decomposed model.

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)