Projections onto convex sets (POCS) based optimization by lifting
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.spage | 623 | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.contributor.author | Bozkurt, Alican | en_US |
dc.contributor.author | Günay, Osman | en_US |
dc.contributor.author | Habiboglu, Yusuf Hakan | en_US |
dc.contributor.author | Köse, K. | en_US |
dc.contributor.author | Onaran, İbrahim | en_US |
dc.contributor.author | Tofighi, Mohammad | en_US |
dc.contributor.author | Sevimli, Rasim Akın | en_US |
dc.coverage.spatial | Austin, TX, USA | en_US |
dc.date.accessioned | 2016-02-08T12:04:42Z | |
dc.date.available | 2016-02-08T12:04:42Z | |
dc.date.issued | 2013 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 3-5 Dec. 2013 | en_US |
dc.description.abstract | A new optimization technique based on the projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in RN the corresponding set which is the epigraph of the cost function is also a convex set in RN+1. The iterative optimization approach starts with an arbitrary initial estimate in R N+1 and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp; p < 1 may be handled by using the supporting hyperplane concept. The new POCS based method can be used in image deblurring, restoration and compressive sensing problems. © 2013 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:04:42Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013 | en |
dc.identifier.doi | 10.1109/GlobalSIP.2013.6736960 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/27908 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/GlobalSIP.2013.6736960 | en_US |
dc.source.title | 2013 IEEE Global Conference on Signal and Information Processing | en_US |
dc.subject | Compressive sensing | en_US |
dc.subject | Iterative Optimization | en_US |
dc.subject | Minimization problems | en_US |
dc.subject | Nonconvex optimization | en_US |
dc.subject | Optimization problems | en_US |
dc.subject | Optimization techniques | en_US |
dc.subject | Orthogonal projection | en_US |
dc.subject | Projections onto convex sets | en_US |
dc.subject | Convex optimization | en_US |
dc.subject | Cost functions | en_US |
dc.subject | Data processing | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Iterative methods | en_US |
dc.subject | Optimization | en_US |
dc.subject | Set theory | en_US |
dc.title | Projections onto convex sets (POCS) based optimization by lifting | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Projections onto convex sets (POCS) based optimization by lifting.pdf
- Size:
- 256.68 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version