Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in förster resonance energy transfer

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage10501en_US
dc.citation.issueNumber2en_US
dc.citation.spage10492en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorYeltik A.en_US
dc.contributor.authorGuzelturk, B.en_US
dc.contributor.authorHernandez-Martinez, P. L.en_US
dc.contributor.authorGovorov, A. O.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2015-07-28T12:01:05Z
dc.date.available2015-07-28T12:01:05Z
dc.date.issued2013en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe study phonon-assisted Forster resonance energy transfer (FRET) into an indirect band-gap semiconductor using nanoemitters. The unusual temperature dependence of this energy transfer, which is measured using the donor nanoemitters of quantum dot (QD) layers integrated on the acceptor monocrystalline bulk silicon as a model system, is predicted by a phonon-assisted exciton transfer model proposed here. The model includes the phonon-mediated optical properties of silicon, while considering the contribution from the multimonolayer-equivalent QD film to the nonradiative energy transfer, which is derived with a d(-3) distance dependence. The FRET efficiencies are experimentally observed to decrease at cryogenic temperatures, which are well explained by the model considering the phonon depopulation in the indirect band-gap acceptor together with the changes in the quantum yield of the donor. These understandings will be crucial for designing FRET-enabled sensitization of silicon based high-efficiency excitonic systems using nanoemitters.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:01:05Z (GMT). No. of bitstreams: 1 10.10211-nn404627p.pdf: 2372827 bytes, checksum: a825dcf55d7a3620795c97db3df23ecb (MD5)en
dc.identifier.doi10.1021/nn404627pen_US
dc.identifier.issn1936-0851
dc.identifier.urihttp://hdl.handle.net/11693/12351
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nn404627pen_US
dc.source.titleACS Nanoen_US
dc.subjectNonradiative Energy Transferen_US
dc.subjectNreten_US
dc.subjectForster Resonance Energy Transferen_US
dc.subjectFreten_US
dc.subjectPhononsen_US
dc.subjectTemperatureen_US
dc.subjectIndirect Band-gap Semiconductor,siliconen_US
dc.subjectNanoemittersen_US
dc.subjectQuantum Dotsen_US
dc.subjectExciton-exciton Couplingen_US
dc.titlePhonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in förster resonance energy transferen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.10211-nn404627p.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:
Full printable version