Algebro geometric methods in coding theory

Date

1999

Editor(s)

Advisor

Klyachko, Alexander A.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
5
views
18
downloads

Series

Abstract

In this work, we studied a class of codes that, as a subspace, satisfy a certain condition for (semi)stability. We obtained the Poincare polynomial of the nonsingular projective variety which is formed by the equivalence classes of such codes having coprime code length n and number of information symbols k. We gave a lower bound for the minimum distance parameter d of the semistable codes. We show that codes having transitive automorphism group or those corresponding to point configurations having irreducible automorphism group are (semi)stable. Also a mass formula for classes of stable codes with coprime n and k is obtained. For the asymptotic case, where n and k tend to infinity while their ratio ^ is seperated both from 0 and 1, we show that all codes are stable.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type