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ABSTRACT

ALGEBRO GEOMETRIC METHODS IN CODING THEORY

Ibrahim Ozen
M.S. in Mathematics

Supervisor: Prof. Dr. Alexander A. Klyachko
1999

In this work, we studied a class of codes that, as a subspace, satisfy a
certain condition for (semi)stability. We obtained the Poincaré polynomial of
the nonsingular projective variety which is formed by the equivalence classes
of such codes having coprime code length n and number of information sym-
bols k. We gave a lower bound for the minimum distance parameter d of
the semistable codes. We show that codes having transitive automorphism
group or those corresponding to point configurations having irreducible au-
tomorphism group are (semi)stable. Also a mass formula for classes of stable
codes with coprime n and k is obtained. For the asymptotic case, where n
and k tend to infinity while their ratio % is seperated both from 0 and 1, we

show that all codes are stable.

Keywords: Linear code, variety, moduli sapce, stability, point configu-

ration.
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OZET

KODLAMA TEORISINDE CEBIRSEL GEOMETRIK
METOTLAR

Ibrahim Ozen
Matematik Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Alexander A. Klyachko
1999

Bu calismada alt uzay olarak (yar)istikrarhlik sartim saglayan kodlar
incelendi. Kod uzunlugu n ve enformasyon sembol sayis1 k’nin aralarinda asal
olduklar1 durumda bu kodlarn denklik siniflarindan meydana gelen projektif
varyetenin Poincaré polinomu elde edildi. Bu kodlarin minimum uzaklik
parametresi d icin bir alt simir belirlendi. Otomorfizma grubu gecigken olan
veya indirgenemz otomorfizma grubu olan nokta konfigirasyonlarina kargilik
gelen kodlarin (yari)istikrarh olduklar1 gosterildi. Aralarinda asal n ve k’ya
sahip kod denklik simiflar1 igin bir kiitle formiili bulundu. Parametreleri n
ve k’nin, oranlari %’in 0 veya 1’den ayr1 tutulmalar ve sonsuza yaklagmalan

durumunda biitiin kodlarin (yar1)istikrarh olduklar1 gosterildi.

Anahtar Kelimeler: Lineer kod, varyete, modiler uzay, istikrarlilik,

nokta konfigirasyonu.
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Chapter 1

Introduction ,

1.1 Linear Codes

Due to the need of transfer of information in a healthy way, Information
and Coding Theory has been a fast developing subject, bringing different
branches of mathematics together since the study of Shannon [Sha] in 1948.

Linear codes appear to be an important means serving the objective of
reliable information transfer i.e. the objective of transporting information in
such a way that it is possible to recover the message from the received but
possibly corrupted one. Detecting and correcting the errors which may occur

while the transferring of the information is a part of the problem.

A linear code is a subspace C of a coordinate space F; where I, is a finite
field of ¢ elements. Information is carried by the vectors (code words) of C
through the channel which is mostly noisy and distorting the code words. As
we explain in chapter 2, if we take a code C' with its dimension as a subspace
k, each vector of C' carries an information of k letters in its n symbols. We
call k& the number of information symbols and n the length of the code. At
this point the question of how far we are away from the efficient use of time
and energy is immediate. Efficiency in that sense is measured by the ratio
R = k/n. From point of error correction, we pay attention to an other

parameter of the code, that is the minimum number of nonzero places in

1



nonzero code vectors of C. This parameter is called the minimum distance
of the code and denoted by d. In this way we measure properties of codes by

its parameters.

The multiplicative torus T™ has a natural action on vectors of F} by
coordinatewise multiplication. This action doesn’t change the parameters
of a code. Hence we call codes equivalent under action of T™ as equivalent

codes,

The central problem of coding theory is algebraic construction of codes

with given R and as large a d as possible.

1.2 Stable Codes

In our study we focus on a class of codes that are important in this respect.

Definition: A code C' C Fy is said to be semistable if for any coordinate

subspace IF; where

F) = {(21,22, -, %) € Fy :2; =0 for j ¢ I} IC [n]

q
the following inequalities hold
dim(CNF)) dimC
<
|1 )

and called stable if the inequalities are strict for I # 0, [n].
Example: The coordinate space Iy itself is semistable.

We use the term stable without consideration of the technical difference
between semistable and stable in this discussion unless presicion is necessary.
Since in the origin of coding theory are codes with good parameters, stable
codes deserve a prior study. We can reduce the study of all codes to study
of stable codes because once we are given a nonstable code C' we can find a
stable subcode C' with better parameters than those of C. We have shown

this by the following proposition. (Proposition 2.5.)

Proposition: For any nonstable code C C Fy there exists a (semi)stable

code C given by
C:=Cn IF;
2



where ]Fg is a destabilizing space with a minimal choice for I. Parameters of
C satisfy

5 d
n < n, R > R, d>d, 5>5:;.D

Beside what we have above we have the advantage of using machinery
of algebraic geometry by studying stable codes. Codes with fixed length
n and number of information symbols k are points on the Grassmannian
G(n, k). Stability in our definition is equivalent to Mumford stability of the
subspace C C F; w.r.t. the torus action on Grassmannian [Mum,Ch. IV,
n.4]. As we learn from Geometric Invariant Theory [Mum] equivalence classes

of semistable codes form a projective variety which we denote

Coe = Gln, k)//T™. (1.1)

1.3 Stable Point Configurations

There is a one to one correspondance between orbits of diagonal torus
T™ C GL, on subspaces of F} which don’t lie in a coordinate hyperplane
and n point configurations in P*~! modulo projective transformations. This
correspondance is established by the so called Gelfand-MacPherson transfor-

madtion
¢ : G(n, k) — C.(P*1).

It is immediate from the definition that a stable code can not lie in a coordi-
nate hyperplane. Gelfand-MacPherson transformation maps such a code C

into a configuration of hyperplanes
C; = C nF\

cut out by the coordinate hyperplanes of F}. Furthermore we can pass to the
dual space C' and take those lines o; vanishing on C;’s. The configuration
¥(C) = {0:}%, is unique upto action of PG L.

Definition: A point configuration & C P*~! is said to be semistable if the

inequalities

r—1
B _ I3

-
r -k



hold for r < k and stable if the inequalities are strict for r < k.

Example: The configuration ¥ C P*~! of all rational points is semistable.
Since
¢ -1

1—1 _
IP (]FQ)I_ q—l’

we have

EnP Y ¢ -1 < ¢ -1 I3

T (g—=1)r —(¢g=Dk &

by the monotonicity of the function

J)J

e’ —__1~ . Z
S0 (7 +1)!

x
for posttive zx.

This definition is equivalent to Hilbert-Mumford stability of the point
¥ e P x PF1 x ... x PF! w.rt action of PGLy and Pliicker embedding

(P s P¥ N = (’;) -1

[Mum, Ch. III, n.2].

Gelfand-MacPherson transformation carries stable codes to stable point
configurations and even more establishes an isomorphism between the moduli

space 1.1 and the invariant theoretical factor
Cop = (P*"1//PGLy.

For coprime n and k, this is a projective nonsingular variety of dimension

(k—1)(n—k—1).

1.4 The Main Result

The main result of this study is an explicit formula for the Poincaré polyno-

mial

Pn,k(q) = Zﬂsqs

4



of the moduli space C, x of stable n point configurations in P*~! when (n,k) =

1 (Theorem 3.15).

It is immediate from the definition that for coprime n and k semistability
of a code is equivalent to stability. In this case C, x is a projective nonsingular
variety. Using combinatorial methods in [Kly] we calculate the number of
rational points of this variety. It turns out that the number of rational
points is given by a polynomial P, ; in gq. Therefore P, x(q) is the Poincaré

polynomial
Pup(q) =3 B2sd’ (1.2)

of Cn ) by Deligne-Weil theorem [Del] [Wei] i.e. coefficient B, of ¢" is the
2rth betti number of the variety C, ;. From code theoretical point of view it
has an other significance. P, x(q) is the number of stable codes with given
length and number of information symbols over F, upto equivalence when
these two numbers are coprime. We give a list of examples for P, ;(gq) in

Appendix.

1.5 Applications

We give three applications of the above theory.

1.5.1 Codes with Big Automorphism Group

Codes with big automorphism group are especially interesting for coding
theory. We have examined codes with transitive automorphism group and
codes corresponding to configurations having irreducible group from point of
stability. We give two theorems. (Theorems 2.13 and 2.14.)

Theorem: Let C be a code with a transitive automorphism group, then C is

semaistable. O

Theorem: Let ¥ be a configuration of n points in P*=1 with irreducible auto-
morphism group. Then the corresponding code C(X) € G(n, k) is semistable.
a

Example: Cyclic codes are semistable.

5



We have a lower bound for the minimium distance parameter d of such

codes by our following proposition. ( Proposition 2.6.)

Proposition: For a semistable code C the following inequality holds

1.5.2 Mass Formula for Stable Codes

Using Poincaré polynomial P, x(g) we get a mass formula

1 _ Pn,k(q)

M-(q) = CEC [Aut(C)] ~  nl

for stable codes with given length and number of information symbols (The-
orem 3.21). This formula counts equivalence classes of codes with a weight
reciprocal cardinality of automorphism group of the class. In Appendix we

give a table of masses of stable codes for a variety of choices n,k and q.

1.5.3 Asymptotic Behaviour of The Number of Stable
Codes

In chapter 4, we investigate the asymptotic distribution of stable codes.
When we consider codes with information rate R seperated both from 0 and
1 by a positive €, we see that as n and k tend to infinity, ratio of the number
of stable codes to the number of all codes tend to 1. Formally speaking, we

prove the following theorem. (Theorem 4.1)

Theorem:

¥ #(stable[n, k],codes)
nyfmsto #(all[n, klycodes)

under the constraint

k
e< —<1—e€ O<exl.
n



Chapter 2

Preliminaries

2.1 Elements of Linear Codes

The basic concepts of linear codes are reminded and our notations are in-
troduced in this section. We begin with definition of the very fundamental

object, linear code.

Definition 2.1 A linear code is a subspace C' C F*, where F 1s a finite field

IF,. Elements of C' are called code vectors or code words.

2.1.1 Parameters of Linear Codes and Maximum Like-
lihood Decoding

Consider a k dimensional subspace C C F*. Once we fix a basis for C' and
form the £ x n matrix G whose rows are the basis elements, we can generate
the code C as an embedding of F* into F*. Simply we multiply the elements
of F* on the right by G and get elements of C in F*. In this regard we call

G a generating matriz of C.

Keeping in mind that C is outcome of this mapping we are in a position to

send information of k letters by words of n digits in the transmission process.

7



We call k the number of information symbols and n the length of the code
C. The class of codes over F, with fixed length n and number of information
symbols k, are called the [n, k], codes.

One can discuss about the rate of this information transferring, which
is denoted by R = k/n. Although it would be preferable to reduce the
inefficiency, it is not always the case that we can achieve the most efficient
coding by choosing £ = n. In this case it wouldn’t be possible to detect
the possible defections of the code words during their transfer in the (noisy)

channel.

We have so called mazimum likelihood decoding procedure which enables
us to detect such errors if we allow the redundant symbols in C to the price of
inefficiency. An other important parameter is involved now. This parameter

is defined via the Hamming distance
d:CxC—oz

which counts the number of places where two elements of F* differ. We
call minimum of those numbers for the pairs of different elements of C' the

minimum distance of C' and denote it by d.

When we receive a vector we compare it with the code vectors. An error
in the channel causes the code vectors change in some coordinates. If the
number of such defected positions is less than d, then we will be aware that
the received message is defected. Maximum likleihood decoding is to assign
the defected vector the one that is closest in C. So that if we receive a
vector which is not defected in more than [d%] places, we find the correct
word that was transmitted. Together with d we have the relative minimum

distance § = d/n in the same normalization with R.

We find it convenient to mention here two fundamental problems of cod-
ing theory related with the parameters of codes. Shannon has proved that
maximum transfer rate with neglicable errors is the capacity of the channel
which depends on its physical characteristics. So that we can have codes
with transfer rates R arbitrarily close to capacity of the channel. But all the
proofs of this theorem is nonconstructive and one problem of coding theory

1s algebraic construction of such codes.

We have seen also that other than R there is one more important param-

eter & for codes. For each code C, we have a point P(C) = (6(C), R(C)) in
8



the unit square [0,1]> C R% Mannin has shown that there is a continuous
curve, dividing the square into two such that code points are dense in one
part and isolated in the other. One of the fundamental problems of coding

theory is learning about this curve, of which very little is known.

2.1.2 Automorphism Group of A Linear Code

One of the useful tools for understanding the nature of linear codes is the
automorphism groups of codes. We consider the subgroup G of GL, gener-
ated by transpositions of coordinates of elements in F* and multiplying the
i th coordinate by a nonzero scalar from F;. This group is represented by
n X n matrices having one nonzero element in each row and each column.
The automorphism group of a code C is the subgroup of G which fixes C as

a subspace of F".

Codes with big automorphism group turn out to be important, since those

codes have big values of the parameter d.

2.2 Stable Codes and Stable Point Configu-

rations

2.2.1 Stable Codes

The torus T = F; x F; x ... x F; has a natural coordinatewise action on the
vector space ™. This action doesn’t change the parameters of the codes, so

calling the codes in the same orbit as equivalent codes makes sense.

Definition 2.2 A code C C F* is said to be semistable if for any coordinate

subspace ! where
F = {(z1,22,,  +y2n) EF" :2;=0 for g ¢ I} IC[n]

the following inequalities hold

dim(C NF') < dimC

W < — (2.1)

and cailed stable if the inequalities are strict for I # 0, [n].

9



Remark: From the definition, it is clear that when (n, k) = 1 semistability
implies stability.

Definition 2.2 is equivalent to stability of the subspace C C F* w.r.t the
torus action on Grassmannian G(n, k) [Mum]. As we learn from the Geomet-
ric Invariant Theory [Mum] the equivalence classes of semistable subspaces

form a projective variety
G(n,k)//T".

By the remark above, if n and &k are coprime then semistability is equivalent

to stability and in this case G(n, k)//T™ is a projective nonsingular variety.

2.2.2 Gelfand-MacPherson Transformation and Stable
Point Configurations

We can deal with the equivalence classes of semistable codes in geometric

terms with the help of Gelfand-MacPherson transformation
@ : G(n, k) = C (P*1)

which maps a subspace C C " not lying in a coordinate hyperplane, to the
configuration of hyperplanes in C' cut out by the coordinate hyperplanes of
I*. Correspondance between the hyperplanes and linear forms helps us map
the code into a configuration of points in the dual projective space Pk-1,
This configuration is considered up to linear transformations of C' and gives
a one to one correspondance between the orbits of 7" on G(n, k) (when it is
well defined) and configurations of n points in P*~! with trivial intersection
modulo projective transformations. We call such a configuration ¥ C P*-!
a. constellation. Coordinates of points p € ¥ can be choosen to form the
columns of the generating matrix of the corresponding code C' = C(X) as

pointed out in [T-V]. Code parameters after the transformation takes the

form
|¥] = code length
k = number of information symbols
min  |[ENA*!| = minimum distance

Ak—1 cPk—-1
Where min is taken over all affine planes AF=1 C P*-1.

10



We'll see that the moduli space G(n, k)//T™ is mapped to an other moduli
space by Gelfand-MacPherson transformation.

Definition 2.3 A point configuration ¥ C P*7! is said to be semistable if

the inequalities

D100 S DY
Ll g i

— < (2.2)

hold for » < k and stable if the inequalities are strict for r < k.

This definition is equivalent to Hilbert-Mumford stability of the point
¥ e Pl x P! x ... x P*! w.r.t action of PGLy and Plicker embedding
[Mum]

B PV N = (’Z) ~ 1

Proposition 2.4 Gelfand-MacPherson transformation maps a (semi)stable
code C C T into a (semi)stable configuration & € (P*"1)" and induces an

isomorphism of invariant theoretical factors
¢ Gn,k)//T" — (B*')*/[PGLy.

Proof: First we show that Gelfand-MacPherson transformation carries sta-

bility condition in 2.1 to the one in 2.2. Consider a coordinate subspace

F' I C [n]. Let
J=[n]\ I

If we denote the hyperplane in C cut out by the coordinate hyperplane having
the jth place is zero by C; we have the equality

dim(C NF") = dim(C;, N C;, N...NCy,.)

where j; run in J. As we discussed above those hyperplanes C;, are mapped

to lines p;, in the dual space of C. Hence we have

k — dim(span{p;,, pjs, - - -, Pin}) = dim(C;, N G;, N...NG;,,)

11



" The inequality 2.1 is transformed into

k — dim(span{pi}ies) _ *
n—|J| T on

/] <
dim(span{p;};es}) ~ &

Remembering that the configuration corresponding to a code which doesn’t
lie in a coordinate hyperplane spans the space, the last form of the inequality

is what we want to get. It is clear that the transformation is one-one. O

2.3 Parameters of Stable Codes

In this subsection we clarify why study of stable codes is important. We can
construct a stable code out of a nonstable one and in the end we have a code
with better parameters. Moreover we have a lower bound for the minimum

distance of a semistable code.

Proposition 2.5 For any nonstable code C' C F* there exists a (semi)stable

code C with parameters

n<n, R >R, 6> 4,

IS
v
QL

Proof: Let FI C F* be a destabilizing subspace for which
dim(C N FY) S dim(C)

=R
1] n
holds and let
C:=CnF cF
be the code with
n=|I<n.
C has transfer rate
. ; ! k
R —_ M > — = R
17| n

12



Since C C C then d > d and hence

§>6
is clear. If we choose in the construction above F' with a minimal I C [n]

stability of C is easily seen. O

Proposition 2.6 A semistable code C = C(X) satisfies

1

d> —.
R

Proof: The semistable code C corresponds to the semistable configuration
Y. We know by 2.2 that

k-
ISP < ﬁk—l)n

If we substitute this and estimate, we get

d= min |[ENA* ! =n—- max |[TNP*?>n- (k= Ln — = _ i
AF—1 CPk-1 Pk—2CPk-1 k k R

2.4 Canonical Filtration of a Configuration

We introduce the main tool of the study in this section. The whole section is
exposition of the ideas in [Klyl]. We'll show that stability of a configuration
(or of the corresponding code) can be checked via its canonical filtration.
Since we are dealing with point configurations in a projective space, we find
the equivalent study of line configurations in a vector space more convenient

for simplicity.

Now we define a characteristic class of a configuration ¥ of 1 dimensional

subspaces of a vector space V

c(V)=12nV]|.

By means of ¢(V) we define the slope of the configuration as

V)= dcl(r:%/

We can reword the definition 2.3 for 1-spaces in a linear space V.

13



Definition 2.7 A configuration ¥ of 1-spaces in V is semistable if
w(U) < u(V)
for any subspace U C V with the induced configuration
Ugs=UN3,
and we say that the configuration is stable if the inequalities are strict for
U#0,V.

Let’s fix our space V and configuration %.

Proposition 2.8 For any pair of subspaces F,G C V with induced configu-

rations, the following inequality holds

(FNG)+c(F+G)>ce(F)+ c(G) (2.3)

Proof: Let o € ¥ be a line in the configuration. We have
(F+G), D F,+ G,
hence,

dim(F +G), > dim(F, +G,)
dim(F N G), + dim(F + G), > dimF, + dimG,

Summation over o € ¥ gives the desired result.O

Now we make comments on geometric interpretation of the proposition.
Let’s represent a subspace F' C V by a point P(F) = (dim(F'),c(F)) on the
plane R2.

If we draw a parallelogram three vertices determined by P(F'), P(G) and
P(F + @), then by the proposition above, the fourth vertice opposite to
P(F + G) lies below the point P(F'NG). Or, P(F) is lower than the vertex
opposite to P(G) in the parallelogram whose three vertices are determined
by the points P(F + G), P(F N G) and P(G).

14



>dim

Now let’s consider a convex hull of all points P(F') for subspaces FF C V.
Its upper boundary is a polygonal line I' connecting the points O = P(0)
and P(V).

Proposition 2.9 There exists a unique subspace F, C V thal corresponds

to a vertex v of I'. These subspaces form a chain.

Proof: We begin with the second statement. Let subspaces F,G C V
correspond to the adjacent vertices of the polygonal line I'. Then all points
P(H),H C V, lie either on the segment [P(F), P(G)] or below the line
passing through these two points. But the proposition 2.8 implies that the
point P(F+G) lies above the vertex opposite to P(FNG) of the parallelogram
constructed by the three points P(F'), P(G) and P(F N@G). Hence the point
P(F 4+ G) corresponds either to P(F') or to P(G) (one that lies farther to
right) say P(G), then

dim(F + G) = dimG
F c G

Applying the same idea, the parallelogram degenerates to a line segment

in the case of unicity of the space, hence we have the result.0

We proved that, to a configuration ¥ there corresponds a unique chain of
subspaces in V, forming an upper convex polygonal line when represented in

the plane R? as described above.

Definition 2.10 The chain of subspaces F, C V of proposition 2.9 v a
15



vertex of I', is called the canonical filtration of the configuration ¥ of 1-

spaces in V.

Now we give a characterization of the canonical filtration.

Proposition 2.11 Let V and X be given. Suppose that the induced configu-

rations on composition factors Fpy = F;/Fi_1 of a filtration
F:0=FCcFHhcCc..CFE,=V

are semistable and their slopes are strictly decreasing

p(F) > p(Fien)- (2.4)

Then F is the canonical filtration of the configuration X.

Proof: Let I'(F) be the polygonal line with vertices P(F;). Condition 2.4
implies that the successive line segments [P(F;), P(Fi;1)] have decreasing

slopes, hence I' is upperconvex.

We are given that the induced configuration in composition factor F;
is semistable on that space. This condition makes sure that for any U,
F,_y c U C F, the point P(U) lies below the diagonal [P(F;_1), P(F;)] of
the rectangle formed by these two opposite vertices. We can use this idea
to show that for any subspace U C F;, the point P(U + F;_;) lies below I’
(Fi—.1 C U + F;-; C F,). We prove by induction on 7 that for any subspace
E C F1, the corresponding point P(E) lies below I'. By induction hypothesis
P(ENF;_1) is below I'. One more use of the proposition 2.8 will show us that
the point P(E) lies below the vertex opposite to P(F;_;) in the parallelogram
constructed by the vertices P(Fi_y), P(E N Fi_;) and P(F + F;_;). Hence
we proved P(E) lies below I'(F) for any E C V. O

Theorem 2.12 A configuration ¥ of 1-spaces in 'V is semistable if and only

if its canonical filtration is trivial.

Proof: Definition of canonical filtration and the previous proposition leaves

no need for any proof.0
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Theorem 2.13 Let C be a code with transitive automorphism group. Then
C is semistable.

Proof: Since C has transitive automorphism group, it can not lie in a co-
ordinate hyperplane (unless it is trivial), hence Gelfand-MacPherson trans-
formation is well defined and we can consider the dual point configuration &

corresponding to C.

Automorphism group fixes the canonical filtration Fy (from uniqueness

of c.f. and proposition 2.11) as well as ¥ . Let
O'iEFj O'iEEandFjEfz

Since o; is equivalent to all o;’s and Fj is fixed by the automorphism group,
then Fj contains all the elements in ¥ . But X spans the space (columns of
the genrating matrix), hence F; = C'. Canonical filtration is trivial and we

get the result. O

Theorem 2.14 Let ¥ be a configuration of lines in a vector space V with

irreducible automorphism group A C PGL(V). Then ¥ is semistable.

Proof: Let
F:FhCch..CF,=V

be the canonical filtration of £. Since F has to be fixed by A and A is
irreducible, there is no F; € F with F; # 0,V. Canonical filtration is trivial
and X i1s semistable. O

Theorem 2.15 The minimum distance parameter d of cyclic codes satisfies

1

d>—.
~ R

Proof: This is a direct consequence of the proposition 2.6 and theorem 2.13.
O

17



Chapter 3

Poincaré Polynomial of C,, ;.
when (n, k) =1

In this chapter we evaluate the Poincaré polynomial
Pcn,k(m) = Zﬂlwl

of the variety C, x for coprime n and k. The coefficient B; is the jth Betti
number of C,, r.-We make use of the combinatoric methods in [Klyl] to achieve

this goal.

When (n,k) = 1, C, is a projective nonsingular variety. We find the
number of rational points this variety over F,. It turns out that the number
of rational points is given by a polynomial P, in gq. By Deligne-Weil [Del]
[Wei] theorem we conclude that P, x(q) is the Poincaré polynomial

Pn,k(q) = Zﬂ%qi,
Of Cn,k'

In the following discussion, we denote the number of ordered n line con-
figurations in a k dimensional vector space over F, by R,(n,k). Canonical
filtrations of the configurations will help us find a recurrence relation for
Ry(n, k). We solve this recurrence relation by introducing the notion of

hierarchy for decompositions of the pair (n, k) as in

18



(n,k) = ((n1,k1),(n2,k2), .-, (", km)) where
= ny+nz+...+nn
k = k1+k2++km

At this point we get R,(n,k) as a sum taken over normalized hierarchies
whose terms are quite simple except for a coeflicient a. We find the coeeffi-
cient a by help of Combinatoric Geometry of the Plane. In the end R,(n, k)
is a polynomial given by a sum taken over decompositions of (n,%) which
satisfy

n, _n

kT
Stable line configurations have no pointwise automorphisms, lience we find

that the number of rational points of C, ; is given by

_ Ry(n, k)
Pn,k(q) - IPGLkl .

It should be kept in mind that we deal only with the case (n,k) =1 in

the following sections.

3.1 Recurrence Relation for R,(n, k)

To begin with, we choose to find the number of lines having given projection

on the filtration

F:FhCcFkHC...CF,=V.

Proposition 3.1 Let k; denote the dimension of the composition factor Fy;
of the filtration

F-RhCckhC...CF,=V

and let n; be the number of lines fized in the same factor. Then the number

of lines in V having projections those fized lines in the filtration F is given
by

gei<s kima,
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Proof: Let’s fix a configuration % of lines and let o € ¥ lying in Fj;) =

F;/F;_,. The vectors in V whose projection on Fy; is parallel to o form a

linear space of dimension dim F;_;. So there are g™ F-1lines having given

projection o for each o € . If the number of lines in F}; of X is given by n;
dim F;

then we have a total of ¢™ -1 lines in V with given projection. O

Now we introduce the notations which will be used heavily in the following

discussion. Those are Gaussian multinomial coeflicients.

g - 1
M= T (3.1)
[k]q! = [k]q[k - 1]q[k - 2]!1 <o [I]q' (3'2)

b _ Ky
[ k]kz...,lcm :Iq - []‘nl]q|[k2]q'[km]q' (33)

Proposition 3.2 Let ky, ko, ..., ky be a sequence of dimensions of compo-

sition factors of a filtration in V. The number of such filtrations is

k (]
k1k2~--km q.

In the previous chapter, we have seen that every configuration of n lines
in V has a unique canonical filtration(Proposition 2.9). Also it is worth
reminding that intersection of the configuration with the composition factors
of its canonical filtration is semistable in that factor space. This relation
enables us to determine the number of all configurations in terms of the

‘canonical filtrations and the number of semistable configurations of given n

and k.

We begin with grouping configurations according to their canonical fil-

trations.
#(n line conf. in V)= r#(n line conf.s with canonical filtration F) (3.4)

If we fix the dimensions of composition factors of the canonical filirations
by k;’s and the numbers of lines contained in those factor spaces by n;’s we
can put equation 3.4 in a more formal language. In the following discussion
R,(n,k) denotes the number of semistable configurations of n lines in a k

dimensional vector space.
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Theorem 3.3

n k n o king
[k]q = Z [ kiky ... Kk ]q ( ) qzzﬁ 1:.[1?’9(77“i’ki)

Proof: Left hand side is the number of all n line configurations in a k
dimensional space. On the right hand side, we take sum over all canoni-
cal filtrations. We fix the canonical filtrations with the dimensions of their
composition factors and the preassigned number of semistable line configu-
rations lying on those compositions. The Gaussian multinomial coefficient
counts the number of filtrations with given dimensions of composition fac-
tors. We construct a total of n lines by taking n; from each composition
factor of dimension k;. The product of R,(n;,k;)’s determines the number
of possible constructions. However in the space V we have qz'ﬂ hiy config-
urations with given projections on the composition factors. And we count
the possible rearrangements of n elements where the orderings of n; elements

were already included in the term f2,(n;, &;) by the binomial coefficients.D

We know by theorem 2.12 of the previous chapter that, the semistable con-
figurations have trivial canonical filtrations. Hence we can extract R,(n,k)

[rom the theorem above

k n
R(/(n” k) - [k]:; a Z |: bk ]\" niny mn
nmytngd .. 4 ny, =n IND e e q 2 LAY (3
ky 4kt =k
TR TR 3

- kin R
g2oi<s ™ T Ry (niy ki) (3.5)
i
where now the sum is taken over all nontrivial canonical filtrations.

What we have at the moment is a recurrence relation. For an explicit
formula, we have to apply this to all pairs (n;, ;) and to their decompositions

and so on.

At this point we begin changing our notations. Having given the necessary
motivations and explanations about the decompositions of 1 and k& with
condition n;/k; > niy1/kiyq1, from now on we will denote the index of our
sum with decompositions of the pair (n, k). Let’s call the pairs cells and the

ratio n/k slope of the cell. So our formula will be denoted

k n i
Ry(n, k) = [k]7 — > [ bk ] ( ) q2'<1’ 3 T Ry (i, ki)
(nm k) LTETET T g i

ning ... N
(Yll,k])(nz,kz).. 1 2 m
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where the sum is taken over nontrivial decompositions of the cell (n, k) into

smaller cells with their slopes strictly decreasing from left to right.

3.2 Normalized Hierarchies

The notion of a cell is still far from being enough to carry the successive
applications of our formula. Hence we continue developing our notations and

introduce the so called hierarchy.

Definition 3.4 A hierarchy J is a decomposition of the pair (n, k) into cells

with levels.

The cell (n, k) itself is the only cell of level 0. We decompose (n, k) in
a nontrivial way and call new cells as cells of level 1. And we continue the
process, dividing some of cells of level 1 into cells of level 2, and some of them
into cells of level 3. We can stop at any step and call this decomposition
a hierarchy. The cells that we stop decomposing are called atorns of the

hierarchy. We denote hierarchies with bracket structures. For example

((n17 kl)v cey (TL4, k4))-] = ((TL], kl)) ((nz’ k2)7 (Tlg, k3))7 (724, ]‘74))'

Each pair in a balanced pair of brackets denote a cell. We don’t use double

brackets. Qur sample hierarchy contains

(n1, k1), (n2 + na, ky + k3), (n4, ka) cells of level 1,
(na2, k2), (ns, k3) cells of level 2,
(n1,k1),. .., (ng, ka) atoms.

Keeping in mind the motivation of defining hierarchies, we have to put a

normalization condition on our hierarchies.

Definition 3.5 A hierarchy J is said to be normalized if for any cell

(n7 k) = ((n17 kl)) (n27 k2), ceey (nm’ km))

the slopes of the cells (n;, k;) of the next level decrease from left to right.

ng nip

k7 o (36)
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Definition 3.6 We denote by NA(J) the number of nonatom cells in the
hierarchy J. The number (—1)N4) is called the sign of J.

In the preceding notations, the formula in equation 3.5 can be given as

Proposition 3.7

D VR el IR I G P 1 (3
q

((n1,k1) (n2,k2). (nmikm)) s Mng ... Nm i

The summation is conducted over all normalized hierarchies.

Proof: The foregoing explanations leave no need for any further proof.0

We see that the new form of our formula depends mostly on the set of

atoms of the hierarchies. If we fix the set of atoms and define a new coeflicient

a((n1y k1), (na, k2)y ooy (1, kin)) = Z stgnd  (3.7)

atoms:(ny k1) ,(n2,k2) v, (nan b )

our formula takes the form

]{{1(7.[" ]‘) = Z (L((?'Ll by )7 oy (T, km)) [ kik ' k jl < . >
1R2 ... Ry,
q

(n1 k1) (n2,k2)-(an, kon) nny...Nm

g2 " T [R]M(3.8)

i

3.3 Combinatorial Geometry of the Plane

Now we will discuss the geometric interpretation of the normalization con-
dition and the coefficient a defined in 3.7. For easiness in notation we de-
note an atom (n;, k;) by A;. We represent a cell A = (n,,k,) by a point
P(A) = (k;,n,) on the plane R?. Suppose we deompose A = (n,k) as
in A = (A1,As,...,An). This decomposition will be represented by a
polygonal line (A1, Aq, ..., An), with consequtive vertices v; = P(A<i),
Aci = (2'7:1 nj,z_’;:] k;) for 0 <@ <m and v = (0,0).

Let’s apply this to a normalized hierarchy J. We consider the first level

decomposition
A - (A],Az,...,Ar).
23



We keep our notations and denote the slope of a cell A by y(A).The normal-
ization condition 3.6 assures that

p(A:) > p(Diga)-

This results an upper convex polygonal line I'' when we join the successive

vertices v; as described above.

In the same way, we can take the first level cell A; and decompose it into
cells of level 2 as in A; = (An, A, ..., Ay ). In the plane, process goes on
by putting the point P(Ay, Az, ..., Aio1, Ai) = (k<ici + ki, ncio1 +n4) and
joining it to P(A;_;). We complete I'? beginning at P(A<;_1) and ending
at P(Ag;), by joining the successive vertices P(Ay,...,A;1,A;;) 1 <5 <7y
Again by the normalization condition 3.6 I'? is upperconvex. We do this
for every cell of J until we reach atoms. In the end, we get polygonal lines
satisfying
1) Vertices of I are contained in the set of vertices of [**1,

2) A polygonal segment of ["*! connecting two successive vertices of I is
upperconvex,

3) The first polygonal line I'° is the line segment connecting the origin to the
point P(A) = (k,n). Furthermore the last line I'* is (A1, As, ..., A,,) where

A; are the atoms of the hierarchy J.

On this construction let D' = D¥(A;,Az,...,An) 7 > 0, be the polygon
bounded by the lines I'* and I'°. We know by the properties 1 through 3 that
I'* intersects I'° only at the endpoints. The difference D' — D'™1 ¢ > 1 is a
union of convex polygons, one for each side of I''. Using those polygons we

get a decomposition of D* = D into convex pieces
D =U,D,. (3.9)

The boundary of a piece D, consists of a side of some I'"'"! and a polygonal
segment that connects the two ends of that side. So the decomposition
in 3.9 is obtained by cutting D using some of inner disjoint diagonals of
D i.e. cutting by some of its diagonals that entirely lie in D, connecting

nonadjacent vertices and having no common points except possibly the ends.

For a closer look at the coeflicient a of 3.7 we use this geometric in-
terpretation. We have observed that the polygonal line corresponding to a
normalized hierarchy intersects the line segment I'® only at the ends. This

motivates the following
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P(as))

Figure 3.1: Normalized Hierarchy Represented on Plane
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Definition 3.8 The decomposition A = (A, Az,..., A, ) is said to be stable
if the following relation for the slopes is satisfied

p(A<i) > p(A) 1<:<m-—1L (3.10)

Proposition 3.9 The coefficient a(Aq, Az, ..., An) is nonzero only for stable

decompositions A = (A1, Az, ..., Ay) into atoms A; and in this situation
a(Al, Az, N )Am) = h+(D) - h—(D),

where ht(h™) is the number of partitions of the polygon D into even(resp.

odd) number of convez pieces by the disjoint inner diagonals.

Proof: We have a sum in 3.8 over fixed sets of atoms of normalized hierar-
chies and a is defined as sum of signs of a number of normalized hierarchies
with fixed set of atoms. Normalized hierarchies give stable decompositions
as explained so a can not be nonzero for a nonstable decomposition. We have
one-one correspondance between the normalized hierarchies and the subdivi-
sions of D by its disjoint inside diagonals. The cells of positive level which are
not atoms correspond to the diagonals of the decomposition. Each diagonal

means one convex piece in such a decomposition.

sign(J) = (__1)NA(J) _ (_1)num. of convex pieces in decomposition D

hence,

a(A1, Ay, ..., Aw) = WY (D) - h~(D).O

We still want to find the coeficient a in explicit form. We get help of the
combinatorial geometry of the plane to find the relation between A% (D) and

h= (D).

Let D be a plane polygon no three of its vertices lying on the same line.
A diagonal of D is a line segment connecting nonadjacent vertices of D and

lying entirely in D.
Proposition 3.10 For n > 3 any n-gon D contains a diagonal.

Proof: D contains a vertex B at which the angle is less than m. Take the
adjacent angles A, B,C with this order. Now, if we can’t draw a diagonal
from B to a vertex D # A, C, then AC is a diagonal. If not, D is a triangle.
O
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Corollary 3.11 Any n-gon D can be divided by its disjoint inside diagonals
into triangles. The number of such triangles in any such subdivision isn—2.0

Now, we want to learn more about the subdivisions s of D into any convex
pieces. We denote by S the set of such subdivisions. This is an ordered set
and s < t means s is inscribed in t. So, the minimal elements of S are

triangulations.

The key to find a in explicit form is the theorem following the next two
propositions. We will imitate the steps in [{Klyl] to prove this theorem. For
this we develope the notations. Let D be a polygon and a be a side of D fixed.
We denote by A = A(a) the set of all convex polygons that are inscribed in
D and contain the side a. By |6] we denote the number of sides of a polygon
s.

Proposition 3.12 For any convez polygon D, we have

> (-1 =-1.

beA

Proof: We fix the side «, hence for a k-gon § € A(a), remain k — 2 vertices
which can be choosen among n — 2 vertices of D. So we have (Z:;) k-gons

in A(a). If we take sum over k

Proposition 3.13 For any polygon D, we have

o (-1)F = -1, (3.11)

e

Proof: By induction reasons, we take 3.11 valid for m-gons where m < | D).
Let V = V(a) be the set of vertices of D from which we can see the side
a = AB. Take all theese vertices C1,Cy,...,C,, in the order of increasing of

the angle ABC; and consider the polygon
D(a) = AC,...CpB.
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By construction it follows that if 6 € A(a) then it is contained in D(a).
Hence, if D(a) # D then equation 3.11 follows from the induction hypothesis.
If we have D(a) = D for all a then D is convex and 3.11 is valid by the

previous proposition. O

Theorem 3.14 For any n-gon D

*(D) — h=(D) = (—1)".

Proof: Any subdivision o € 2(D) contains unique polygon § € A. Hence

x(D) = YD)~k (D)

- > (-

oeX(D)

- Y % e

6€4 Seoes(D)

= -3 I x(Dy.

€A D;eD\é

The product is taken over all components D; in the complementation D\ §.By

induction reasons we assume that the theorem is valid for the polygons D;

hence we have

[ x)= TI ()P = (=1)Pibl-2,

D;eD\6 D;eD\é

Therefore

x(D)=-=5 TI x(Di) = =Y (-1)PHhl

6€A D;eD\é sen
= (1)Y= (-1)")
(-D)!PlLo

If we put the coeflicient a in its place we get

o= S ], ]( S L (5

(no,ko) (11 ,k1)---(rem i) ]"Okl e km nony...NM;m R

where the sum runs over all stable decompositions of (n, k).

28



Theorem 3.15 For coprime n and k, Poincaré polynomial of the moduli

space Cp i 15 given by

1 k
Pn,k(‘]) = TEE-D Z (_1)m [ ]
g 7 (g = 1) [k]g! (no ko) (m1 kr)ers(m om) koky .. km |

( n ) DI U[k,-]@.lz)

NNy ...My

where the sum is taken over all stable decomposition of (n, k).

Proof: The sum on the right hand side is the number of all stable n line
configurations in a k& dimensional vector space. A stable configuration has no
pointwise automorphism other than the scalar ones, so we divide the sum by
the cardinality of PG Ly to get the number of rational points of the moduli

space.ld

3.4 Sum over Geometric Terms

The decomposition in index of sum in 3.12 can be put in geometric terms.
We denote by k x n a rectangle with horizontal dimension k and vertical
dimension n units. Diagonal of the rectangle is the line segment that con-
nects the South-west and the North-east corners. Also we will use the paths
I' C k xn running from South-west to North-east which lie over the diagonal.
Our paths won’t be allowed to move in the directions other than north and
east. The points where the path changes its direction from east to north will

be called a vertez. We can denote such paths with a decomposition as in

n+m+...+n, = n,

k0+k1++km = k,

where k; > 0 is a horizontal step and n; > 0 is a vertical step of the path
I'. Having introduced these notations, we can identify the decomposition of
(n, k) in the index of the sum in 3.12 with our paths. And the area S(I')
over the path I' is

S(D) = Y ki
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So we can rewrite Poincaré polynomial 3.12 as

1 k n
Pu,k(‘]) = -1 -1" [ ] < )
¢ (g — 1)m-1[R),! ;( : koky - Jom |\ moma ...,

g5 H[ki]cg'l?))

where the sum runs over paths as described above.

3.4.1 Reduced Steps for Paths

We will try to achieve a simplification in 3.13 by excluding the successive
horizontal steps of I' i.e the zero vertical steps n;. Calculations below are

obtained from Kly2.

We call our first special polynomial in ¢ quantum Stirling numbers. For
g = 1 they give the classical Stirling numbers of the second kind S(n, k)(equal
to the number of partitions of a set of (n + k) elements into £ nonempty
clusters [Gon]). We define quantum Stirling numbers by the following explicit

formula

1 k ; iG an k
Syl k) i= g — (-1 - [ £
g~z [k]g!i=o vl
Sy(n, k) has the following properties which follow from the recurrence relation

given below.

Proposition 3.16

1) S4(n,k) is a unitary polynomial in q with integer coefficients of degree
n(k — 1) and free term (”"'ﬁ'l).

2) 5,(0,k) = Sy(n,1) = 1 and Sg(n, k) # 0 only for k > 0,n > 0 with only
one ezception S;(0,0) = 1.

3) Recurrence relation:

Sy(n, k) = Sy(n, k — 1) + [k],Sy(n — 1, k).0

We’ll show that we can write the polynomial P, x(q) by using S,(n, k) in

the following form
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Theorem 3.17

Pn - —1)™ Sy ~q q y 11 q\Nmy B
#9) (g — 1)*1 zp:( Jha (no + ko)!(n1 + k). . (B + ko)
(3.14)

where the summation runs over all paths
[':no, ko, iy, b1y e ooy N,y ki

above the diagonal of k x (n — k) rectangle with successive vertical and hori-

zontal steps n; > 0 and k; > 0.

Proof: After a simple cacellation the formula 3.13 becomes
i n [1:(k:]y
P.i(q) = - —1m5(r)< >_q_
k(9) qi(%_l(q N ;( )"q nony ... "m ) Ik,

without any change in index of the sum. Now let us consider a vertical step
a > 0 of T followed by a number of horizontal steps b; of total length b = 3 b;

having zero vertical steps between them. Most parts of the formula depends

only on a and b. Instead of only [[—:]% we have

L R
[Bolo[b1),) - - - [bs)g! 707

bo+by+..4bs=b

[bﬁ;[b—pﬁ[ﬂ > (_1)3[”1”’271?"’1’3}«;

g bi+b2 +...4+bs=p

The following claim simplifies our job

Claim 3.18

Sy, ]q=(—1)ﬂq“’%’1.

by+ba+otbs=p b1,bz,.. ., bs

Proof of claim: Left hand side is the coefficient of u” in the following series

s -1
uk U,k p(p—1) u?
]_ —_ -_— = -_ = (—l)pq 2 —_—
by [ by [A:Jq!} [Z [qu!} 2 ol
The last equality follows from the quantum binomial formula.

S(-1yrgEt [

p20

n

]zO, n > 0.0
Pl
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So we arrive to the quantum Stirling numbers

IV 7
bo+b1 +.. +bs=b( ) [bolg! (bl - - - [b]o!
SR M R CRIY

which allows us rewrite 3.13 as follows

| .
Pos(d) = e (1) ()
J»(Q) q(z)(q B 1)1:—1 ;( ) q

The sum runs over all paths

Sq(nO—kO)kO) S(nm'_ mal“ )

nol. .. ny,!

[ :ng,ko,ni, k1, ooy nn, b

above the diagonal of the k X n rectangle with positive steps both in vertical
and horizontal directions. Since Sy(n — k, k) = 0 for n < k, we may suppose
that n; > k;. This makes it natural to consider instead of I' a new path r

in k x (n — k) rectangle with the same horizontal steps and reduced vertical

-0 () -5 ()

we arrive to the formula 3.14. O

steps n; — k;. Using

We tried to get a formula without zero vertical steps of the paths but
in the end the reduced steps n; still can be zero. So we attack once more

to the same problem with new polynomials. We introduce another quantum

numbers (i.e. polynomials in q)

Ao ) = S0 (1 ) s

1<k

with the following properties.

Proposition 3.19
1. Fy(n,k) is a unitary polynomial of degree n(k— 1) with integer coefficients

and free term (—1)*1.
2. Fy(n,k) =0 except n > 0,k > 0 and

F,(0,k) = (—1)¥1, Fy(n,1) = 1.
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3. The following symmetry relation holds
Fy(n, k) _ Fy(k,n)
(-1 (¢—1)*

4. The following duality identity holds

m _S(T) Fy(no, ko) - . . Fy(nm, km) _ k—1 F;(n,k)

;(‘1)‘] (ot ko) - (ot Byl V) [CEWSH

where the sum runs over all paths
[:no,koy. .oy, km

from SW to NE corners of k x n rectangle with vertical and horizontal steps

ni,k; > 0. Here S(I') is the area above I' and
Fr(n, k) = ¢"* D Fi(n,k), §=1/q

is the dual polynomial to F,. O

Theorem 3.20 [n the previous notations

m S(F) Fq(no, ko) .« aa Fq(nm, ]\‘m)

n!
Prk(q) = m;(_l) T o+ ko) (e + o))

(3.15)

where the sum runs over all paths
r: no,konnl,k],. .. ,Tlm,km

above the diagonal of k x (n — k) rectangle with successive vertical and hori-

zontal steps n; > 0, k; > 0.

Proof: The proof is similar to calculations in the previous theorem.Let us
consider a segment of the line I' consisting of a vertical step of length n fol-
lowed by a sequence of horizontal steps k; of total length k = 3~ k;. Then
summation over all partitions k; of £ changes in the formula 3.14 each mul-

tiplier %’}:—k';-,l to the sum

n+k
—1)° S (n. k) =
Z k( 1) (n-l—ko,kl,...,ks ) o(n, K)

ko+ki+...+ks=

_ n—l—k 2 1\s k—ko
- Z (n_*_kO)SQ(nvl"O) Z ( 1) <n+k1,k2,...,k3 )

koSk ki+ko+...+ks=k—ko
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We can evaluate the internal sum

k — ko
ol )
k1+k2+-§-:ks=k—ko n+ kl’ kz, Tt ks
k!(coefficient of z¥ in 14+ (1 —e*) + (1 —e*)? +..)) =

k!(coefficient of 2* in e7%) = (—1)*

So we get F polynomials

n+k
-1
k0+k1§+ks=k n + k’o, k], e

E(—1)k—i("+k)sq(n,i) = Fy(n,k)

i<k n-+1t

. ) Se(n, ko) =

and we can rewrite the formula 3.14 as stated in theorem. O

3.5 Mass Formula

In this section we give one of the applications of Poincaré polynomial in
[Kly2]. Mass formula counts the equivalence classes of codes with an assigned

weight reciprocal cardinality of automorphism group of the class.

In the previous sections we dealt with the space C, j of ordered configu-
rations. Both from geometric and code theoretical points of view it is more
natural to deal with unordered configurations (codes differing by a permuta-
tion of coordinates are usually identified). They may be treated as points of
the factor C, x/S, with respect to natural action of the symmetric group S,
by permutation of points. This factor is usually a singular variety. Besides a
rational point of this factor doesn’t necessarily correspond to a configuration

of rational points.

In the following theorem we deal with unordered configurations of rational

points upto projective equivalence rather than with rational points of the

factor Cp k/Sn.

Theorem 3.21 For coprime n and k the following mass formula for un-
ordered stable n point configurations & C P*=Y(F,) holds

1 _ Pn,k(q)
; |Auty| —  n!

34



Proof: Let ¥ € C,, 4 be a stable configuration of n points in P*~1. It corre-
sponds to an equivalence class of codes. If we disregard its order and consider
the unordered configuration ¥ C P*~! we get n! different orderings but IE%E—I
different classes of stable codes. Sum over all such unordered configurations
of stable n point configurations gives us the number of stable [n, k], codes

upto equivalence which is given by P, x(g). Hence we have

n!

- P,
1 Pri(q)
= ! O
§ |Auty| n!
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Chapter 4

Asymptotic Distribution of
Stable Codes

We devote this chapter to an application of Poincaré polynomial P, x(q)

of theorem 3.15.This will be the achievement of proof of the main theorem

in this chapter:

Theorem 4.1
#(stable[n, k] codes)

Ii =1 .
nimoo  F(all[n, k] codes) (4.1)
under the constraint
k
e<;<1—e 0<e<l. (4.2)

In words, we want to show that asymptotically all codes whose parameters

n and k satisfy 4.2 ,which in turn is to say that almost all codes, are stable.

4.1 Poincaré Polynomial

In chapter 3, for coprime n and k£ we have obtained the Poincaré polynomial

of the isomorphic varieties
G(n, k)//T™ ~ (P*")*//PGLy
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[proposition 2.4]. This polynomial gives us the number of stable k spaces of
F, upto equivalence under the action of the multiplicative torus T . The
following proposition shows how Poincaré polynomial P, x(gq) is involved for

our purposes in this chapter.

Proposition 4.2 The limit in theorem 4.1 is equivalent to

Jim_ Pn,k(q[)(z ]— H- (4.3)
k

while the condition 4.2 is respected.

Proof: We need to find the number of stable [n, k], codes. They are counted
upto equivalence under the action of 7" by P, (q). In each orbit we have

(¢ — 1)™! codes, because ¢ — 1 elements of T™ act trivially on subspaces.

Hence we have
#(all stable [n, k], codes) = Pox(q)(qg—1)"7".

The Gaussian multinomial coeflicient counts the number of rational points

of G(n, k) over the field IF,.
#(all [n, k], codes) = [ Z ]
q

So we have the equality

#(allstable [n, k], codes)  Pnx(q)(q—1)"""
#(all[n, k], codes) [ n ]

k

which shows the result.0

4.2 Poincaré Duality

The limit in proposition 4.2 involves powers of ¢, the cardinality of the ground

field. Poincaré duality will help us continue the calculations in ¢ = %
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Proposition 4.3 The limit in theorem 4.1 is equivalent to

= _ ~\n-1
lim Poi(q)(1—9)

n,k——»oo n
[ k|
q

with keeping the condition 4.2 on n and k.

(4.4)

Proof: Both P,4(q) and the Gaussian multinomial coefficient in equation

4.3 are Poincaré polynomials hence we can use their selfdualities

Pox(q) = qdim(c""‘)Pn,k(‘f)

n _ qdim(G(n,k)) n
k|’ k|
q q

If we substitute this to equation 4.3, we get

"R (@ (=) P@)(1 - g)

k(n—k) | T n
il H
q q

whose limit under the condition 4.2 is equal to that in 4.1 by proposition 4.2.

]

=
Il
| =

4.3 Asymptotics of Quantum Coefficients

Definition 4.4 The function

(e e}

n(q) =TI -¢)

=1
is absolutely convergent for |¢| < 1 and is called the Etha function of
Dedekind.

Using Poincaré duality and the Etha function, we can prove the following

Proposition 4.5 Theorem 4.1 is equivalent to

’ -

lim (1—§)" ' Pui(q) = (4.5)

n,k—o00

~—

nlq

to

(
provided n, k are subjected to the constraint in 4.
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Proof: We investigate

lim | "
mbovoo | k|
7
where k/n is seperated both from 0 and 1 by 4.2.

o m(1-q)
[’“L_ - @) (- ¢) (4.6)

Since n — k too tends to infinity as well as n and k do, we have

lim [ n } 1
1 = —.
n,k—oo k . 77((7)

Hence we are done by proposition 4.3. O

4.4 Formal Limit

We will carry out the calculations in new quantum numbers defined by

o (n, k) := (1 — q)"¢"* "V Sy(n, k).

Proposition 4.6
1) o,(n, k) is a polynomial in q with integer coefficients.It has degree kn and

free term 1.
2)o,(n, k) satisfies the recurrence relation

JQ(n7 k) = quQ(na k — 1) + (1 - qk)UQ(n - 17 k)

Proof: Those follow at once from proposition 3.16 items 1 and 3. O

Using o polynomials, we will put P, x(¢) in a more convenient form for

our objectives.

Proposition 4.7 We can write Poincaré polynomial of moduli space C\ ),

n! vy Tq(no, ko)og(ny, k1) ... oq(nm, km )
_1 m S (F) q ) q9 ) q ) 4‘7
(1 —g¢q)! ZF:( ) (no + ko)(n1 + k1)l (i + k)! (4.7)

where index of sum is the same as in equation 3.14 but

S*(F) = k(n - k) - Zkin]‘

i<y

Pox(q) =

for any path T :ng,ko,n1, k1, .y k.
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Figure 4.1: S*(I')

Proof: We begin with formula given in 3.14 and use the definition of o
polynomials. After multiplying and dividing each Sy(n, k) by g**~1(1 — §)"

we get the result at once by Poincaré duality. O

We need the following important estimation on S*(T').

Lemma 4.8 For any path I' in index of sum of equation 4.7 we have
n

S™(T) Zn—k-{-l—[z]

except for the trivial one

Lo:n—Fkk with — S*(I') = 0.

Proof: A path I' has vertices at integer pairs (z,y) over the diagonal of the
k x (n — k) rectangle. We fix such a vertex and try to estimate the area
(k — 2)y from below. To find the minimum of this value, we have to choose
y as close to the diagonal as possible over a given z.
n—k
y=[(——)e]+1

This choice works because there is no vertex on the diagonal, except the two

ends of the paths. So, the area enclosed is

()l + 1)k - 2)

This quantity becomes smallest with the choice x = k — 1 and we get the

result. O

Lemma 4.9

1
lim o7(n—k,k)=—— 4.8
i oyl = b k) = = (48)

provided conditions of equation 4.2 are respected.

40



Proof: The crucial point is observing that
q;—'(2n+i+1)(1 _ qk—i)n+k

7k = ) e T A A

=0

Hence we have

o-(n — - (1—g°)" k Y q%(Z(n—k)+i+l)(1 — gk
I (e R ey R T et R (et Tt B (e

We estimate the sum on the right hand side.

q—%('Z(n—k)-l-’H-l)(l _ qk—l)‘n.

k .
D D T S s e s L

The sum is convergent and the expression gets exponentially small as we let
n and k to oo under the constraint of equation 4.2. Hence under the given
conditions, we have

(1= 1

im oz;(n—k, k)= lim — — — = ——.0
LA ' 1-q1-¢)...0=7) n(q)

Now we show that limit in proposition 4.5 exists as formal power series.

Proposition 4.10

lim (1 —q)" " Poi(q)

n,k—o00

keeping the conditions of equation 4.2 on n and k exists as formal power

sertes and is equal to that of ﬁ

Proof: The previous two lemmas left little to show. By lemma 4.8 we have
(1 = §)" " Pui(q) = o4(n — k, k)mod degN =n — k + [%] ~1.
If we take limit we get

llm 1——n—1Pn —:—:—
aim (1= )" Paild) = L

as formal power series by the lemma 4.9. O

We have to make finer estimations on S*(I') to show that the value of

this limit as real number exists and is equal to T’(l—q_)
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4.5 Genuine Limit

It is in this section that we prove theorem 4.1 in full. Once more we enjoy
new quantum numbers ¢ and new form of the Poincaré polynomial P, x(q).

We introduce new polynomial in ¢ by

q(n, k) = (1= q)"g" =) Fy(n, k).

Proposition 4.11
1) @q(n, k) is a polynomial in q of degree nk, with integer coefficients and
leading coefficient (—1)"**1. It has constant term 1.

2)

3) @o,(n, k) =0 except forn >0, k>0 and

(0, k) = (=1)* 7", pg(n, 1) = (1 — q)"

4) pq(n, k) satisfies the symmetry relation

@q(m, k) = pq(k,n).0

Proposition 4.12 We can ezpress Poincaré polynomial P, r(q) in terms of
@ polynomaials as

(r) Pq(n0, ko)pg(n1, k1) ... g (nm, km)/4 10)

n! m S*
Pri(q) = 1-qrt ;(_1) 1 (no + ko)!(n1 + k). .. (g + k)?

where index of sum is the same as in theorem 3.20.

Proof: Similar to proof of proposition 4.7, we take Poincaré polynomial
given in equation 3.15 and multiply each Fy(n, k) by (1 — §)"g"¥=). We get
the result by Poincaré duality. O

Proposition 4.13 When n and k are under conditions of equation 4.2
1

lim g\, k) = —_—.
n,k—rco a( ) n(q)
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Proof: We use boundedness of o(n, k) (lemma 4.9) and the identity given
in equation 4.9 to show that ¢ and o behave the same for big n and k.

pa(n, k) = i( 1)Figrt) <n+ k)ffq(n )

=0 n+a
k
k
= nk +E —n]<n_|._ )Uq(n,k—j)
7=1 J
Now we show that under the given conditions, the sum on the right hand

side approaches to 0.

k
3w ("ot )
<ad ("HHer Aoy

— A( "1+ + A+ 4.+ 1+ g

q
A(@)(n+ k=11 + "”)"*’” :
log A(n+k —1)

n

1
= exp{n(—log ¢+ +(1+R—;)log(l+qn)}.

We see that as n tends to infinity the identity approaches to 0. Hence under

the conditions of equation 4.2 we have

11m wz(n, k) = hm oz(n, k) = L

n,k—00 n,k-—00 'I]q_)

by lemma 4.9. O
We have seen that theorem 4.1 is equivalent to showing

nlklgloo(l—q)n "Pi(9) = (@

where n and k are under the conditions of equation 4.2 (Proposition 4.5).
This is partly shown by proposition 4.10. We prove theorem 4.1 by showing

that limit above exists as a real number and is equal to ;7716—)'

Proposition 4.14

Jm (1= a7 Pd) =

where condition in equation 4.2 is respected.
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Rm/(2(1-R))

- >

Figure 4.2:

Proof: Our estimations will be highly depending on the number (m + 1) of

steps of the paths I';,. We recall that there is only one path
Io=n—-4%k

with one step. We seperate the particular term corresponding to I'y from the

rest.
(1=q)" 'Pui(q) =
7

_ _1ymz5"(T) _ A _ 2
= zp:( H™q ( no+ koo 4 ko )(,oq(no,ko) e (M k)

n

— ol — k. k 1\ 5" (Tm) )
RATED % v STl SRR (G}

m 'y

We will estimate the sum on the right hand side. First we do this for big

values of m. Consider division of the k x n — k rectangle as in figure 4.2.

Since the paths of the formula have positive steps, then for a fixed m a
path I',, must have a vertex in the inner strip. Such a vertex help us for the

following estimation

mR
L

L

§°(r) 2 2k

The number of all paths above the diagonal of the (k x n — k) rectangle (for

n, k coprime) running from Southwest corner to Northeast is given by

%(2) (4.11)
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which is less than 2". Hence we can estimate the sum above in the following

way

m * m n
1222 (=gt ( no + ko .1t + km )%(no,ko)-~-%("m”‘m)|

m Iy,

< S0 A m 4 1) E ke ai )

R
=Zexp((m—}—l)logA+nlog2+nlog(m+l)—%(k—-wm_ﬁ))logq)
mRlogqg m2Rlogq (m+1)log A
_Ze)\p (log(m + 1) — 5 +4n(1_R)+log +7).

The information we need is in the first two terms of the exponent above. As

n tends to infinity the rest becomes small comparing to them. There exists

a. constant
moe = mo(q, R)

such that for m > my,

m m n
IZZ ¢” ( no+ko...nm+k >‘P«i(no,ko)---‘Pq‘(”m»km)l = o(n).

m Im

We turn our attention to those paths I';, with m < mgy. We choose a
number M satisfying
lo 1
M > log(mo +1)
Rloggq

Now we consider the two cases
1) '), has a vertex in the central strip described in the figure 4.3,

2) I';, has no vertex in the same strip.

Beginning with the first case, we have estimation for 5*(I';,) as in
RM
> -
S*(Tw) > M(k T R)

Together with the reasonings above we have

m »* n
S ST (e ) ek gsl )

m<mo 'y,

< Y A g 4 1)

= Y exp{nlog(2) + (mo +1)log(A) — M(k — 1R_Aiz) log(q) + nlog(mo + 1)}
= ; exp{n(log(mo + 1) — RM log(q) + %—) log(q) + 1 log(A))}.
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Figure 4.3:

Again we read from the first two terms of the exponent that by the choice
4.12 of M we have exponentially small sum for the paths of the first kind

described above.

The latter case, where we deal with paths having no vertices in the central

strip, helps us estimate Binomial coefficients. In this situation we have
n—(n;+ ki) <2M for some 1

hence,

n n!
<—< - “ o —_ .
(n0+k‘0...nm+km ) — (nm+km)| _71(7‘& 1) (n 2]\4+l)

The last inequality means that the Binomial coefficient of the Poincaré poly-

nomial is a polynomial in n of degree at most 2M.

We have another estimation for the number of paths in this case. Since
the steps of the paths are positive, the number of steps can not be more than

2M + 1. The number of paths in the upper strip is certainly less than
M .
> (k—jy.
7=1

The number of paths which can be constructed in the triangular region of
the lowest strip is bounded. Hence the number of paths in this case is less

than the value of a polynomial Ra (k) in k whose degree is no more than M.
It seems that, in this case our estimation for S*(I') given by
n
S’“(F)Zn—k-l—[z]—-l
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(lemma 4.8) is sufficient for our purposes.

Our final estimation is as follows

—1)mgS (D) n - b)) ... o
;( )™q no + ko .. 1 + i @7(no, ko) - - . pg(nm, k)|
< A™Hn(n —1)... (n — 2M + 1) Rpr(k)g~++E1

~ exp{—(n — k+ [%] —1)log(q) + 2M logn + (mo + 1) log A + M log k}

5] 1 2M logn N Mlog k N (mo+1)log A

<exp{n(—(1- R+~ — —)log(q) +

k n n n n

As n tends to oo the terms in the exponent except the first tend to 0. The

sum is exponentially small and tending to 0.

In the end keeping the condition 4.2 on n and k we came to the point

(1=q)" " Par(@) = wq(n—k,k)+o(n)

1
lim (1 =" 'P,1(g) = ——
n,k_m( q) x(9) e

by the previous lemma.O

Theorem 4.1

| #(stable[n, kl,codes)
n,kn—r»loo #(all[n, k] codes) o

under the constraint

e< —<1—c¢ 0<e<l.
n

Proof: We have shown by proposition 4.5 that theorem 4.1 is equivalent to

1
im (1 = §)" 'Px(3) = —
n,k—»oo( q) 'k(q) n(q)

provided n, k are subjected to the constraint in 4.2. This is proved by the

previous proposition, hence we are done. O
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Appendix A

Examples of Poincaré
Polynomial and Mass

In this part, we give examples of Poincaré polynomials of the varieties C,, j
for different choices of n and k. Also masses of stable [n, k], codes for a

variety of n, k and ¢ are shown in a table.

We give also list of a Maple program which evaluates Poincaré polynomial
of the variety C, ) for given n and k. Ibrahim Ozen is highly indebted to
professor Alexander A. Klyachko for providing this program. It is possible
to evaluate P,x(g) even for noncoprime n and k by this program. We have

made use of it to give examples for this case too.

A.1 Examples of P, i(q)

Psa(q) =¢*+5q+1

Pr2(q) =¢"+7¢*+22¢*+7¢+1

Pra(q)=¢*+7¢°+29¢" +64¢° +29¢* + Tq+1

Pss(q) = ¢®+ 8¢ +37¢% +121¢° +227¢* +121¢° +37¢* +8q+1
Po2(q) =¢*+9¢°+37¢* +93¢° +37¢* +9¢+1

Pos(q) = ¢"2+9¢" +46¢'° +175¢° +506 ¢* +1138¢" 4+ 1727 ,¢°+ 1138 ¢° +
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506¢* +175¢°> + 464> +9¢+ 1

Pioa(q) = ¢"*+104¢" +56 ¢° 4221 ¢° +681 ¢® + 1608 g7 +2527 ¢°+1608 ¢° +
681q* +221¢>+564¢% +10¢g + 1

Py12(q) =¢*+11¢" +56¢° + 176 ¢° + 386 ¢* + 176 ¢° + 56 ¢*> +11g+ 1

P113(q) = ¢ +11¢" + 67¢'%2 + 2874 + 958 ¢'° + 2630 ¢° + 56 56 ¢® +
8383 ¢7 + 5656 ¢° + 2630 ¢° + 958 ¢* +287¢° +6 Tq> +11q + 1

Pi14(q) = ¢ +11¢'" 4+ 67¢"® 4 298 ¢*° + 1069 ¢** + 3257 ¢'3 + 8484 ¢'2 +
18801 g1 + 34202 '° + 44937 ¢° -+ 34202 ¢° + 18801 ¢7 + 8484 ¢ + 3257 ¢° +
1069 ¢* + 298¢ +67¢q 2+ 11q + 1

Pi1s(q) = ¢2° 4 11¢'° + 67¢'® + 298 q'7 + 1080 ¢'° + 3313 ¢% + 8770 g™ +
20253 ¢'3+40352 ¢ +67279 q'1 484792 ¢'° +67279 ¢° 440352 ¢° +20253 ¢7 +
8770 ¢° + 3313¢° + 1080 ¢* +298¢° +67¢2 +11¢q + 1

Pi25(q) = ¢** +12¢% + 79 ¢*2 + 377 ¢*' + 1457 ¢*° + 4824 ¢*° + 14078 ¢'® +
36794 ¢'7 + 86748 ¢'® + 183912 ¢"° + 342941 ¢'* 4 536640 ¢'> + 644959 ¢'% +
536640 ¢! +342941 ¢'° + 183912 ¢° + 86748 ¢® + 36794 7 414078 ¢ 44824 ¢° +
1457 ¢* +377¢°> +79¢* + 12¢ + 1

Pia2(q) = ¢+ 13¢° +79¢®+299¢" + 794 ¢° + 1586 ¢° + 794 ¢ * + 299 ¢° +
79¢% +13¢ + 1

Pias(q) = ¢"8 +13¢"7 +92¢ + 456 ¢"° + 1756 ¢"* + 5552 ¢*° + 14926 ¢** +
34243 ¢ + 63923 ¢'° 4+ 87518 ¢° + 63923 ¢® + 34243 ¢7 + 14926 ¢° + 5552 ¢° +
1756 ¢* + 456 ¢> + 92¢% + 13 g + 1

Pi34(q) = ¢** +13¢% + 92 ¢%% + 469 ¢** 4+ 1913 ¢*° + 6592 ¢’? + 19841 ¢'® +
53055 ¢'7 + 126936 ¢'6 + 270975 ¢'° 4- 509227 ¢ ' + 808616 ¢*> + 988720 ¢'% +
808616 g1 +509227 ¢'°+270 975 ¢° +126936 ¢®+53055 ¢ +19841 g6+ 6592 ¢° +
1913¢ * +469¢°> +92¢* + 13¢ + 1

Piss(q) = ¢*® +13¢%7 4 92¢% + 469 ¢*° + 1926 ¢** + 6749 ¢*° + 20881 ¢*2 +
58256 ¢! + 148257 ¢?° 4+ 346090 ¢'° + 740967 ¢ 18+ 1441861 ¢'7 + 2497242 ¢"¢ +
3688314 ¢*° + 4307297 ¢ + 3688314 ¢'° + 24972424 + 1441861 ¢ +
740967 ¢° 4 3460 90 ¢° + 148257 ¢® + 58256 ¢ 420881 ¢® + 6749 ¢° + 1926 ¢ * +
469¢° +92¢* +13¢ + 1

49



A.2 Examples of Masses of stable [n, k], codes

q=2 | q=3 | q=4
M3, (9) % é %
Ma,z(q ) é % 5%
My, (q ) 21_4 21_4 21—4
M4,2(q ) % % %
M 4,3((1 ) ;»1_4 21_4 715
Msa(9) | w5 ) 12
M, 5,2((1 ) % % i:izlo
M 5,3(‘1 ) % 552 %
Msold) | 135 | i 126
Ms, (q ) 71% %6 7}20
Ms2(q) 1”15 % %L
Mes(@) | 75 | 131 | 290
Mea(q) | 5 3 44
Mss(9) | 53 gon) 0
M1(9) | w5 | som 50
Mr2(9) | 1 7 J%
Mis(a) | 73 | 7 | Temo
M7 .4(q) iéfli % 1767523
Mis(a) | 15 | % | im
M 7,6(q ) #40 E&m 501W
Mz (q) 40:1',20 40;20 403&20
Ms2(q) | 385 # %
Mss(q) | 3% | T | St
Msa(q) | 53 | 55 | Do
Ms,s(q ) 13798 121%% %
M, 8,6(q ) 5%5 TZE %
Ms,(q) 40:1520 401%20 40;20
My, (9) 362]880 '%621880 3621880
Ms,2(q) 1053368 1?).’5%238 13228
Mos(q) | 353 | Soses | ris
Mo(q) | Soer | ones | “3erss0
Mos(q) | Soer | Tonm | “seesto-
Mos(q) | 257 | Toges | 1oz
Ms,(q) 1053368 1(2)3:;8 13328
Mo 5(q) 3621880 162]880 3621880
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1 1 1
M101(9) | s55m00 3628800 3628800
53 251 839
Mioz2(q) 34560 25920 20736
4579 115651 1477351
Mio3(q) 20736 20736 20736
Myo.4(q) 11933 2522407 107557223
10,419 3840 12960 20736
Mio.5(q) 81437 54197231 71208461929
10,5(9 16128 103680 3628800
Myo6(q) 11933 2522407 107557223
10,619 3840 12960 2%36
4579 115651 1477351
Mio,7(q) 20736 20736 20736
53 251 7839
Mios(q) 34560 25920 20736
1 1 1
M, 0,9(‘1 ) 3628800 3628800 3628800
1 1 1
My, 11 (q) 39916800 39916800 39916800
3 979 9953
Mllﬂ(q) 6400 259200 518400
3263 144101 321073
Mhi,3(q) 20736 20736 2304
1303 15734927 853191289
Mi1,4(q) 256 20736 20736
Mi1s(q) 2000669 516049829 26824927062749
11,5(9 80640 71280 39916800
M o(q) 2000669 516049829 26824927062749
11,619 80640 71280 39916800
Mia(q) 1303 15734927 853191289
11,74 256 20736 20736
3263 144101 321073
Mi1,8(g) 20736 20736 2304
3 979 9953
Mi19(q) 6400 259200 518400
1 1 1
Mll,lO(‘]) 39916800 39916800 39916800
1 1 1
M 12,1 (q ) 479001600 479001600 479001600
3 979 9953
MlZ,Z(q) 25600 777600 1244160
Miza(q) | 22840 1873313 2247511
12,319 248832 248832 9216
Mi2.4(q) 6515 78674635 72521259565
12,444 1024 31104 248832
M ( ) 1274653 | 98854149649 | 122245516463717
12,54 15360 1244160 6220800
Mi26(q) 2000669 | 46960534439 | 348724051815737
12,619 15360 213840 4561920
Mi3(q) 1274653 | 98854149649 | 122245516463717
12,749 15360 1244160 6220800
M12.8(9) 6515 78674635 72521259565
12,89 1024 31104 248832
22841 1873313 2247511
M12,9(q) 248832 248832 9216
3 979 9953
Mi2,10(9) 25600 777600 1244160
1 1 1
Ml?vll(q) 479001600 479001600 479001600




A.3 Program for Evaluation of P, (q)

with(combinat):
#Poincare polynomial of the moduli space of stable
#configurations of N points in P~ (k-1).
Poinc:=proc(N,k)
local A,B,ck,Ck, cN, CN,GS, SN, Sk,i,j, m,n, p,mult, pm, P, S,t;
#global ki,beta;
#tau:=0:chi:=0:
#Use the symmetry P(N,k)=P(N,N-k) to reduce
#the calculations
k1:=min(k,N-k);
n:=N-k1:
#recursion for Stirling polynomials
GS[0][0]:=1:
for 1 from 1 to n do
Gs[iJ[1]:=1:GS[i][0]:=0:

od:

for i from 1 to ki1 do
Gs[-1][i]:=0

od:

for i from 0 to n do
for j from 1 to ki1 do
GS[i][j] :=expand(GS[il[j-1]1+GS[i-1] [j1*normal((1-q"j)/(1-q)))
od:
od:
#changing Stirling polynomials to F-polynomials
for i from 1 to n do
for j from k1 to 1 by -1 do
GS[il[j]:=sum(’(-1)~(j-s)*binomial(i+j,i+s)*GS[il[s]’,’s’=1..])
od:
od:
pm:=-1: P:=0:
for m from 1 to ki1 do
pm:=-pm:
#Fixing vertical steps of a path under diagonal.

#For large k it would be better to count compositions
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#one by one instead of creating a table!
Ck:=composition(kl,m):
#the path closest to diagonal with given vertical
#steps ck
for ck in Ck do
for i from 0 to m do
# A[i]:=1i;A[m] :=n;
A[i]:=ceil(sum(’ck[s]’,’s’=1..1)*n/k1);
B[i]:=n-A[il;
od;
#we have to count the closest path separately
S:=sum(’Bl[il*ck[i]’, ’i’=1..m-1);
t:=1:
for i from 1 to m-1 do
if n-Bli]l=sum(’ck[s]’,’s’=1..i)*n/kl then t:=t+1 fi:
od:
mult:=pm*factorial (N)*(1/t)/product (factorial (B[s-1]-Bls]+ck[s]),s=1..m);
P:=P+expand(product (GS[B[s-11-B[s]][ck[s]],
s=1..m)*q"S)*mult;
#51:=S+sum(’ck[i]*(ck[i]-1)/2’,’1’=1. .m);
#tau:=tau+(-1) "Si*pmkmult;
#chi:=chi+i;
#the next path in lexicographic order
while B[1]>m-1 do
for i from m-1 by -1 to 1 do
if B[il>m-i then
for j from m-1 by -1 to 1 do
B[j]:=min(B[i]-1+i-j,n-A[j])

od;
break
fi;
od;
S:=sum(’B[i]*ck[i]’, ’i’=1..m-1);
t:=1,;

for i from 1 to m-1 do
if n-B[i]l=sum(’ckl[s]’,’s’=1..i)*n/k1 then t:=t+1:fi:

od:
mult:=pm*factorial (N)*(1/t)/product(factorial (B[s-1]-B[s]+ck[s]),s=1..m);
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P:=P+expand (product (GS[B[s-1]-B[s]1[ck[s]],
s=1..m)*q"S)*mult;
od:
od:
od:
P:=sort(normal(P/(q-1) " (k1-1)));
RETURN(P) ;

end;

54



Bibliography

[T-V] M. A. Tsfasman, S. G. Vladuts, Algebraic Geometric Codes, Kluwer
Academic Publishers, Dortrecht, Boston, London, 1991.

[Mum] D. Mumford, Geometric Invariant Theory, Springer, 1965.

[Gon] A. A. Goncharov, Geometry of configurations, poylogarithms and mo-
tivic cohomology, Adv. in Math. 114 (1995), 197-318.

[Kly1l] A. A. Klyachko, Betti numbers of space of Hermitian operators of
given spectra and sum., Preprint LITP 94.43, Univ. Paris VI-VII

(1994), 19p.

[Kly2] A. A. Klyachko Cohomology of Stable Configurations and Mass For-
mula for Codes. Preprint.

[Kly3] Meeting Notes with Professor Alexander A. Klyachko.

[Sha] Shannon, C. E. A Mathematical Theory of Communication. BellSyst.
Tech. J., 27, pp. 379-423, 623-656 (1948).

[Del] P. Deligne, La Conjecture de Weil. ., Inst. Hautes Etudes Sci. Publ.
Math. No. 43 (1974), 273-307.

[Wei] A. Weil, Bull. Amer. Math. Soc. 55 (1949) 497-508; MR 10, 592.

55



