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ABSTRACT

ALGEBRO GEOMETRIC METHODS IN CODING THEORY

Ibrahim Ozen 
M.S. in Mathematics

Supervisor: Prof. Dr. Alexander A. Klyachko
1999

In this work, we studied a class of codes that, as a subspace, satisfy a 
certain condition for (semi)stability. We obtained the Poincare polynomial of 
the nonsingular projective variety which is formed by the equivalence classes 
of such codes having coprime code length n and number of information sym
bols k. We gave a lower bound for the minimum distance parameter d of 
the semistable codes. We show that codes having transitive automorphism 
group or those corresponding to point configurations having irreducible au
tomorphism group are (semi)stable. Also a mass formula for classes of stable 
codes with coprime n and k is obtained. For the asymptotic case, where n 
and k tend to infinity while their ratio  ̂ is seperated both from 0 and 1, we 
show that all codes are stable.

K eyw ords: Linear code, variety, moduli sapce, stability, point configu
ration.
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ÖZET

KODLAMA t e o r is in d e  CEBİRSEL GEOMETRİK
METOTLAR

İbrahim Özen 
Matematik Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Alexander A. Kiyachko
1999

Bu çalışmada alt uzay olarak (yan)istikrarlılık şartını sağlayan kodlar 
incelendi. Kod uzunluğu n ve enformasyon sembol sayısı ¿ ’nın aralarında asal 
oldukları durumda bu kodların denklik sınıflarindan meydana gelen projektif 
varyetenin Poincare polinomu elde edildi. Bu kodların minimum uzaklık 
parametresi d için bir alt sınır belirlendi. Otomorfizma grubu geçişken olan 
veya indirgenemz otomorfizma grubu olan nokta konfigürasyonlarına karşılık 
gelen kodların (yarı)istikrarlı oldukları gösterildi. Aralarında asal n ve fc’ya 
sahip kod denklik sınıfları için bir kütle formülü bulundu. Parametreleri n 
ve Â:’nın, oranları ^ ’in 0 veya l ’den ayrı tutulmaları ve sonsuza yaklaşmaları 
durumunda bütün kodların (yarı)istikrarlı oldukları gösterildi.

A nahtar K elim eler: Lineer kod, varyete, modüler uzay, istikrarlılık, 
nokta konfigürasyonu.
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Chapter 1

Introduction

1.1 Linear Codes

Due to the need of transfer of information in a healthy way, Information 
and Coding Theory has been a fast developing subject, bringing different 
branches of mathematics together since the study of Shannon [Sha.] in 1948.

Linear codes appear to be an important means serving the objective of 
reliable information transfer i.e. the objective of transporting information in 
such a way that it is possible to recover the message from the received but 
possibly corrupted one. Detecting and correcting the errors which may occur 
while the transferring of the information is a part of the problem.

A linear code is a subspace (7 of a coordinate space where F, is a finite 
field of q elements. Information is carried by the vectors (code words) of C 
through the channel which is mostly noisy and distorting the code words. As 
we explain in chapter 2, if we take a code C with its dimension as a subspace 
k, each vector of C carries an information of k letters in its n symbols. We 
call k the number of information symbols and n the length of the code. At 
this point the question of how far we are away from the efficient use of time 
and energy is immediate. Efficiency in that sense is measured by the ratio 
R =  fc/n. From point of error correction, we pay attention to an other 
parameter of the code, that is the minimum number of nonzero places in



nonzero code vectors of C . This parameter is called the minimum distance 
of the code and denoted by d. In this way we measure properties of codes by 
its parameters.

The multiplicative torus T'̂  has a natural action on vectors of IF̂  by 
coordinatewise multiplication. This action doesn’t change the parameters 
of a code. Hence we call codes equivalent under action of T ” as equivalent 
codes.

The central problem of coding theory is algebraic construction of codes 
with given R  and as large a d as possible.

1.2 Stable Codes

In our study we focus on a class of codes that are important in this respect.

D efin ition : A code C C is said to be semistable if for any coordinate 
subspace where

FJ =  {(a:i, a;2,, · · ·, Xn) e  ̂ A? =  0 J t  H   ̂ C [n]

the following inequalities hold

dim((7nF^) dimC
1/| -  n

and called stable if the inequalities are strict for /  0, [n].

E xam ple: The coordinate space F  ̂ itself is semistable.

We use the term stable without consideration of the technical difference 
between semistable and stable in this discussion unless presicion is necessary. 
Since in the origin of coding theory are codes with good parameters, stable 
codes deserve a prior study. We can reduce the study of all codes to study 
of stable codes because once we are given a nonstable code C  we can find a 
stable subcode C  with better parameters than those of C. We have shown 
this by the following proposition. (Proposition 2.5.)

P rop osition : For any nonstable code C C there exists a (semi)stable 
code C given by

C := C F  Fi



where is a destabilizing space with a minimal choice for I . Parameters of
C satisfy

h < n, R >  R, d > S >  6 =
n

Beside what we have above we have the advantage of using machinery 
of algebraic geometry by studying stable codes. Codes with fixed length 
n and number of information symbols k are points on the Grassmannian 
G{n, k). Stability in our definition is equivalent to Mumford stability of the 
subspace C C w.r.t. the torus action on Grassmannian [Mum,Ch. IV, 
n.4]. As we learn from Geometric Invariant Theory [Mum] equivalence classes 
of semistable codes form a projective variety which we denote

Cn,k =  G {n ,k)l/T \ (1..1)

1.3 stable Point Configurations

There is a one to one correspondance between orbits of diagonal torus 
T ” C GLn on subspaces of which don’t lie in a coordinate hyperplane 
and n point configurations in modulo projective transformations. This 
correspondance is established by the so called Gelfand-MacPherson transfor
mation

if : G (n,k)

It is immediate from the definition that a stable code can not lie in a coordi
nate hyperplane. Gelfand-MacPherson transformation maps such a code G 
into a configuration of hyperplanes

C i~ G r \

cut out by the coordinate hyperplanes of IF̂ . Furthermore we can pass to the 
dual space C  and take those lines ai vanishing on GiS. The configuration 
S(C') =  is unique upto action of PGLk-

Definition: A point configuration S C is said to be semistable if the 
inequalities

jS n F ’-^l ^  ^
r ~ k



hold for r <  k and stable if the inequalities are strict for r < k.

Example: The configuration E C of all rational points is semistable. 
Since

g - r

we have

|EnF^-^| _  -  1 ^  (7^ -1  _  j g
r {q -  l)r  ~ iq -  l)k  k

by the monotonicity of the function

-  1

”  ^0  (i +  1)!

for positive X .

This definition is equivalent to Hilbert-Afumford stability of the point
S € X X . . .  X

r>k-l\

[Mum, Ch. Ill, n.2].

d/c —1 w.r.t action of PGLk and Pliicker embedding

n

Gelfand-MacPherson transformation carries stable codes to stable point 
configurations and even more establishes an isomorphism between the moduli 
space 1.1 and the invariant theoretical factor

Cn,k =  {r'^ -T IIP G L u.

For coprime n and fc, this is a projective nonsingular variety of dimension
( A ; - l ) ( n - f c - l ) .

1.4 The Main Result

The main result of this study is an explicit formula for the Poincare polyno
mial

s

4



of the moduli space Cn,k of stable n point configurations in  ̂when (n, k) =  
1 (Theorem 3.15).

It is immediate from the definition that for coprime n and k semistability 
of a code is equivalent to stability. In this case Cn,k is a projective nonsingular 
variety. Using combinatorial methods in [Kly] we calculate the number of 
rational points of this variety. It turns out that the number of rational 
points is given by a polynomial Pn,k in q. Therefore Pn,k(q) is the Poincare 
polynomial

P n M  =  E A . 9 ’ (1.2)

of Cn,k by Deligne-Weil theorem [Del] [Wei] i.t. coefficient of g’’ is the 
2rth betti number of the variety Cn,k- From code theoretical point of view it 
has an other significance. Pn,k{q) is the number of stable codes with given 
length and number of information symbols over F, upto equivalence when 
these two numbers are coprime. We give a list of examples for Pn,k{q) in 
Appendix.

1.5 Applications

We give three applications of the above theory.

1.5.1 Codes with Big Automorphism Group

Codes with big automorphism group are especially interesting for coding 
theory. We have examined codes with transitive automorphism group and 
codes corresponding to configurations having irreducible group from point of 
stability. We give two theorems. (Theorems 2.13 and 2.14.)

T h eorem : Let C be a code with a transitive automorphism group, then C is 
semistable. □

T h eorem : Let T, be a configuration of n points in with irreducible auto
morphism group. Then the corresponding code C (S ) G G{n,k) is semistable. 
□

E xam ple: Cyclic codes are semistable.

5



We have a lower bound for the minimium distance parameter d of such 
codes by our following proposition. ( Proposition 2.6.)

Proposition: For a semistable code C the following inequality holds

1
d{C) >

m c y
□

1.5.2 Mass Formula for Stable Codes

Using Poincare polynomial Pn,k{q) we get a mass formula

1 Pn,k{q)
7г!

for stable codes with given length and number of information symbols (The
orem 3.21). This formula counts equivalence classes of codes with a weight 
reciprocal cardinality of automorphism group of the class. In Appendix we 
give a table of masses of stable codes for a variety of choices n,k and q.

1.5.3 Asymptotic Behaviour of The Number of Stable 
Codes

In chapter 4, we investigate the asymptotic distribution of stable codes. 
When we consider codes with information rate R  seperated both from 0 and 
1 by a positive e, we see that as n and k tend to infinity, ratio of the number 
of stable codes to the number of all codes tend to 1. Formally speaking, we 
prove the following theorem. (Theorem 4.1)

Theorem:

:j (̂sia6/e[n, k]qCodes)  ̂
n,k-̂ oo ^(a//[n, k]qCodes)

under the constraint

e < -  < 1 -  e
n

0 <  e < 1.



Chapter 2

Preliminaries

2.1 Elements of Linear Codes

The basic concepts of linear codes are reminded and our notations are in
troduced in this section. We begin with definition of the very fundamental 
object, linear code.

Definition 2.1 A linear code is a subspace C C where F is a finite field 
Fg. Elements of C  are called code vectors or code words.

2.1.1 Parameters of Linear Codes and Maximum Like
lihood Decoding

Consider a k dimensional subspace C C IF̂ . Once we fix a basis for C  and 
form the k x n  matrix G whose rows are the basis elements, we can generate 
the code C  as an embedding of F̂  into F” . Simply we multiply the elements 
of F̂  on the right by G and get elements of C in F .̂ In this regard we call 
G a generating matrix of C.

Keeping in mind that C is outcome of this mapping we are in a position to 
send information of k letters by words of n digits in the transmission process.



We call k the number of information symbols and n the length of the code 
C. The class of codes over F, with fixed length n and number of information 
symbols k, are called the [n, fc], codes.

One can discuss about the rate of this information transferring, which 
is denoted by i? =  k/n. Although it would be preferable to reduce the 
inefficiency, it is not always the case that we can achieve the most efficient 
coding by choosing k =  n. In this case it wouldn’t be possible to detect 
the possible defections of the code words during their transfer in the (noisy) 
channel.

We have so called maximum likelihood decoding procedure which enables 
us to detect such errors if we allow the redundant symbols in C  to the price of 
inefficiency. An other important parameter is involved now. Tins parameter 
is defined via the Hamming distance

d : C X  C Z

which counts the number of places where two elements of F" differ. We 
call minimum of those numbers for the pairs of different elements of C the 
minimum distance of C and denote it by d.

When we receive a vector we compare it with the code vectors. An error 
in the channel causes the code vectors change in some coordinates. If the 
number of such defected positions is less than d, then we will be aware that 
the received message is defected. Maximum likleihood decoding is to assign 
the defected vector the one that is closest in C. So that if we receive a 
vector which is not defected in more than [ ^ ]  places, we find the correct 
word that was transmitted. Together with d we have the relative minimum 
distance 6 =  d/n in the same normalization with R.

We find it convenient to mention here two fundamental problems of cod
ing theory related with the parameters of codes. Shannon has proved that 
maximum transfer rate with neglicable errors is the capacity of the channel 
which depends on its physical characteristics. So that we can have codes 
with transfer rates R arbitrarily close to capacity of the channel. But all the 
proofs of this theorem is nonconstructive and one problem of coding theory 
is algebraic construction of such codes.

We have seen also that other than R there is one more important param
eter 6 for codes. For each code C, we have a point P {C ) =  (6{C), R {C )) in

8



the unit square [0,1]^ C Mannin has shown that there is a continuous 
curve, dividing the square into two such that code points are dense in one 
part and isolated in the other. One of the fundamental problems of coding 
theory is learning about this curve, of which very little is known.

2.1.2 Automorphism Group of A Linear Code

One of the useful tools for understanding the nature of linear codes is the 
automorphism groups of codes. We consider the subgroup Q of GLn gener
ated by transpositions of coordinates of elements in and multiplying the 
i th coordinate by a nonzero scalar from This group is represented by 
71 X  n  matrices having one nonzero element in each row and each column. 
The automorphism group of a code C  is the subgroup of Q which fixes C as 
a subspace of .

Codes with big automorphism group turn out to be important, since those 
codes have big values of the parameter d.

2.2 Stable Codes and Stable Point Configu
rations

2.2.1 Stable Codes

The torus T ” =  X X . . .  X IF̂ has a natural coordinatewise action on the 
vector space IP. This action doesn’t change the parameters of the codes, so 
calling the codes in the same orbit as equivalent codes makes sense.

D efin ition  2.2 A code C C IP is said to be semistable if for any coordinate 
subspace where

F̂  =  {(xi,  X2,, · · ·, Xn) e =  0 /o r  i  ^ 7 C H

the following inequalities hold

dim(C'nF^) dimC
|/| -  n

and called stable if the inequalities are strict for 7 7̂  0, [n].

9
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Remark: From the definition, it is clear that when (n, A:) =  1 semistability 
implies stability.

Definition 2.2 is equivalent to stability of the subspace (7 C F™ w.r.t the 
torus action on Grassmannian G(n, k) [Mum]. As we learn from the Geomet
ric Invariant Theory [Mum] the equivalence classes of semistable subspaces 
form a projective variety

G {n ,k)l/T \

By the remark above, if n and k are coprime then semistability is equivalent 
to stability and in this case G(n, k)//T"' is a projective nonsingular variety.

2.2.2 Gelfand-MacPherson Transformation and Stable 
Point Configurations

We can deal with the equivalence classes of semistable codes in geometric 
terms with the help of Gelfand-MacPherson transformation

which maps a subspace C C ¥^  not lying in a coordinate hyperplane, to the 
configuration of hyperplanes in C cut out by the coordinate hyperplanes of 

. Correspondance between the hyperplanes and linear forms helps us map 
the code into a configuration of points in the dual projective space 
This configuration is considered up to linear transformations of C and gives 
a one to one correspondance between the orbits of T" on G{n, k) (when it is 
well defined) and configurations of n points in with trivial intersection 
modulo projective transformations. We call such a configuration S C 
a constellation. Coordinates of points p G E can be chooser! to form the 
columns of the generating matrix of the corresponding code C =  C'(S) as 
pointed out in [T-V]. Code parameters after the transformation takes the 
form

[E| =  code length

k =  number of information symbols

min =  minimum distance

Where min is taken over all affine planes C

10



We’ll see that the moduli space G(n, k)f /T^ is mapped to an other moduli 
space by Gelfand-MacPherson transformation.

D efin ition  2.3 A point configuration E C is said to be semistable if 
the inequalities

|EnP^-^| ^
r ~ k

hold for r < k and stable if the inequalities are strict for r <  k.

(2.2)

This definition is equivalent to Hilbert-Mumford stability of the point 
S  6  X p*~^ X . . .  X P*"”  ̂ w.r.t action of PGLk and Pliicker embedding 
[Mum]

(pfc-l) tN n 1

P rop osition  2.4 Gelfand-MacPherson transformation maps a (semi)stable 
code C into a (semi)stable configuration E € (P '̂“ ^)" and induces an
isomorphism of invariant theoretical factors

: G {n,k)IIT^

P roo f: First we show that Gelfand-MacPherson transformation carries sta
bility condition in 2.1 to the one in 2.2. Consider a coordinate subspace 

I  C [n]. Let

7 = H \ /

If we denote the hyperplane in C cut out by the coordinate hyperplane having 
the jth  place is zero by Cj we have the equality

dim((7 n F^) =  dim((7fj fl H . . .  n Cj^)

where ji run in J. As we discussed above those hyperplanes (7,, are mapped 
to lines pĵ  in the dual space of C. Hence we have

A ; - d i m ( s p a n { p j , , p j 2 , . . . , p j ^ } )  =  f l  C j ^  n . . . n C j ^ )

11



The inequality 2.1 is transformed into

k -  dim(span{pj}jgj) ^  k
n-\J\

\ J \

n

---  < -
dim(span{pj}j£j) k

Remembering that the configuration corresponding to a code which doesn’t 
lie in a coordinate hyperplane spans the space, the last form of the inequality 
is what we want to get. It is clear that the transformation is one-one. □

2.3 Parameters of Stable Codes

In this subsection we clarify why study of stable codes is important. We can 
construct a stable code out of a nonstable one and in the end we have a code 
with better parameters. Moreover we have a lower bound for the minimum 
distance of a semistable code.

P rop osition  2.5 For any nonstable code C there exists a (se7ni)stable 
code C with parameters

h < R >  R, 6 > S, d >  d.

P roof: Let C F" be a destabilizing subspace for which

dim(C' n F^) dim((7)
|/ |

> =  R

holds and let

n

C := C n F̂  C F̂

be the code with

C has transfer rate

h =  |/| < n.

~ dim{C  n F^) k 
R =  rri > ~ Jt. 

|/| n

12



Since C C C  then d > d and hence

S > 8

is clear. If we choose in the construction above with a minimal I  C [n] 
stability of C is easily seen. □

Proposition 2.6 A semistable code C =  ^(E) satisfies

Proof: The semistable code C  corresponds to the semistable configuration 
S. We know by 2.2 that

k
If we substitute this and estimate, we get

d =  min IE n M =  n — max IE fl |̂ > n
A f c - l  r P f c - 1  '  p f c - 2 r P f c - l  ' '  ~

fc-2| {k — l)n n 1
^ k - l  (-pfc pfc-2(-pfc- k

2.4 Canonical Filtration of a Configuration

We introduce the main tool of the study in this section. The whole section is 
exposition of the ideas in [Klyl]. We’ll show that stability of a configuration 
(or of the corresponding code) can be checked via its canonical filtration. 
Since we are dealing with point configurations in a projective space, we find 
the equivalent study of line configurations in a vector space more convenient 
for simplicity.

Now we define a characteristic class of a configuration E of 1 dimensional 
subspaces of a vector space V

c{V) =  \T.fW\.

By means of c{V)  we define the slope of the configuration as

.(X. -  i " ' ’dim V

We can reword the definition 2.3 for 1-spaces in a linear space V.

13



/‘ (U) <  M V)

for any subspace U C V with the induced configuration

C/s = C/ n E,

and we say that the configuration is stable if the inequalities are strict for
u^o,v.

Let’s fix our space V and configuration E.

Definition 2.7 A configuration S of 1-spaces in V is semistable if

P rop osition  2.8 For any pair of subspaces F ,G  G V  with induced configu
rations, the folloiuing inequality holds

c{F  n (?) +  c{F  -F G) > c{F)  +  c(G’) (2.3)

P roof: Let cr G E be a line in the configuration. We have

(F  -h G)a D F , F G ,

hence,

dim(i^ -f G)o- ^  dim(iG· +  G^) 

dim(F n G)a- +  dim{F -f G)c >  dim F̂  -f dim G^

Summation over cr G E gives the desired result. □

Now we make comments on geometric interpretation of the proposition. 
Let’s represent a subspace F C V hy a, point P{ F)  =  (dim (F), c(F )) on the 
plane E.̂ .

If we draw a parallelogram three vertices determined by P{F) ,  P{G)  and 
P { F  G), then by the proposition above, the fourth vertice opposite to 
P { F  +  G) lies below the point P { F  H G). Or, P{ F)  is lower than the vertex 
opposite to P{G)  in the parallelogram whose three vertices are determined 
by the points P { F  +  (?), P ( F  n G) and P{G).

14



Now let’s consider a convex hull of all points P{ F)  for subspaces F  C V. 
Its upper boundary is a polygonal line F connecting the points 0  — P (0) 
and P{V) .

P rop osition  2.9 There exists a unique subspace F  ̂ C V that corresponds 
to a vertex v of F. These subspaces form a chain.

P roo f: We begin with the second statement. Let subspaces F, G C V 
correspond to the adjacent vertices of the polygonal line F. Then all points 
P { H ) , H  C P, lie either on the segment [P{F),  P{G)]  or below the line 
passing through these two points. But the proposition 2.8 implies that the 
point P { F + G )  lies above the vertex opposite to P{FC\G) of the parallelogram 
constructed by the three points P{F) ,  P{G)  and P { F  D G). Hence the point 
P { F  +  (?) corresponds either to P {F)  or to P{G)  (one that lies farther to 
right) say P{G),  then

dim(F +  (?) — dimG

F  C G

Applying the same idea, the parallelogram degenerates to a line segment 
in the case of unicity of the space, hence we have the result. □

We proved that, to a configuration S there corresponds a unique chain of 
subspaces in V,  forming an upper convex polygonal line when represented in 
the plane as described above.

D efin ition 2.10 The chain of subspaces F  ̂ C V of proposition 2.9 u a
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Now we give a characterization of the canonical filtration.

P rop osition  2.11 Let V and S be given. Suppose that the induced configu
rations on composition factors î [j] =  of a filtration

F  :0  =  Fo C Fi C . . .  C F m ^ V

are semistable and their slopes are strictly decreasing

p.{F[{]) > p{F[i+i]). (2.4)

Then F  is the canonical filtration of the configuration E,

P roo f: Let F(.F) be the polygonal line with vertices P(Fi).  Condition 2.4 
implies that the successive line segments [P(jPj), P(Fi+])] have decreasing 
slopes, hence F is upperconvex.

We are given that the induced configuration in composition factor F[q 
is semistable on that space. This condition makes sure that for any U, 
Fi-i C U C Fi, the point P{U)  lies below the diagonal [P{Fi-i),  P{Fi)] of 
the rectangle formed by these two opposite vertices. We can use this idea 
to show that for any subspace U C Fi, the point P{U Fi-i) lies below F 
(F,_i C U +  Fj_i C Fi). We prove by induction on i that for any subspace 
E  C Fi, the corresponding point P{E)  lies below F. By induction hypothesis 
P{Er\Fi-i) is below F. One more use of the proposition 2.8 will show us that 
the point P{E)  lies below the vertex opposite to P (P ,_i) in the parallelogram 
constructed by the vertices P {F i-\ ),P {E  fl Pi_i) and P {E  +  P,_i). Hence 
we proved P{E)  lies below F(P’) for any E C V. □

T h eorem  2.12 A configuration S of 1-spaces in V is semistable if and only 
if its canonical filtration is trivial.

P roo f: Definition of canonical filtration and the previous proposition leaves 
no need for any proof. □

vertex of F, is called the canonical filtration of the configuration S of 1-
spaces in V.
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T h eorem  2.13 Let C be a code with transitive automorphism group. Then 
C is semistable.

P roo f: Since C has transitive automorphism group, it can not lie in a co
ordinate hyperplane (unless it is trivial), hence Gelfand-MacPherson trans
formation is well defined and we can consider the dual point configuration E 
corresponding to C.

Automorphism group fixes the canonical filtration J-·̂  (from uniqueness 
of c.f. and proposition 2.11) as well as E . Let

cTi e Fj e E and Fj G Fj:

Since cr¿ is equivalent to all cr^s and Fj is fixed by the automorphism group, 
then Fj contains all the elements in E . But E spans the space (columns of 
the genrating matrix), hence Fj =  C. Canonical filtration is trivial and we 
get the result. □

T h eorem  2.14 Let T, be a configuration of lines in a vector space V with 
irreducible automorphism group A  C PGL{V) .  Then E is semistable.

P roo f: Let

F : F o C F r . . . c F m  =  V

be the canonical filtration of E. Since F  has to be fixed by A  and A  is 
irreducible, there is no Fj € F  with Fj /  0, V . Canonical filtration is trivial 
and E is semistable. □

T h eorem  2.15 The minimum distance parameter d of cyclic codes satisfies

P roo f: This is a direct consequence of the proposition 2.6 and theorem 2.13.
□

17



Chapter 3

Poincaré Polynomial of ¿ 
when (n, k) = 1

In this chapter we evaluate the Poincare polynomial

Pcn,ui^) =
i

of the variety Cn,k for coprime n and k. The coefficient f3j is the jth Betti 
number of C„,fc.We make use of the combinatoric methods in [Klyl] to achieve 
this goal.

When (n,k) =  1, Cn,k is a projective nonsingular variety. We find the 
number of rational points this variety over F ,. It turns out that the number 
of rational points is given by a polynomial Pn,k in q. By Deligne-Weil [Del] 
[Wei] theorem we conclude that Pn,k{q) is the Poincare polynomial

P,M 9) =  T , k i \

of Cr,

In the following discussion, we denote the number of ordered n line con
figurations in a A; dimensional vector space over F, by Rq{n,k). Canonical 
filtrations of the configurations will help us find a recurrence relation for 
Rq{n  ̂k). We solve this recurrence relation by introducing the notion of 
hierarchy for decompositions of the pair (n, k) as in

18



(n,k) =  { {ni ,ki ) , {n2,k2) , . .. ,{nm,km)) where 

n =  7̂1 +  n2 +  . . . +

k =  At] +  ¿2 +  . . .  +  k„i-

At this point we get Rq{n, k) as a sum taken over normalized hierarchies 
whose terms are quite simple except for a coefficient a. We find the coeeffi- 
cient a by help of Combinatoric Geometry of the Plane. In the end Rg{n, k) 
is a polynomial given by a sum taken over decompositions of (n, k) which 
satisfy

Tli n
T

Stable line configurations have no pointwise automorphisms, hence we find 
that the number of rational points of is given by

Rq (^) k'j
RuA q) = \PGLk\ ■

It should be kept in mind that we deal only with the case (n, k) =  1 in 
the following sections.

3.1 Recurrence Relation for Rq{n̂  k)

To begin with, we choose to find the number of lines having given projection 
on the filtration

: Fo C C ... C Fm = V.

P rop osition  3.1 Let k{ denote the dimension of the composition factor F[{] 
of the filtration

F :  F o C F i C  . . . C  F^ =  V

and let Hi be the number of lines fixed in the same factor. Then the number 
of lines in V having projections those fixed lines in the filtration F  is given 
by

19



P roo f: Let’s fix a configuration S of lines and let cr G S lying in =  
The vectors in V  whose projection on F ]̂ is parallel to a form a 

linear space of dimension d im F _i. So there are lines having given
projection cr for each cr G E. If the number of lines in F[j] of E is given by nj 
then we have a total of fines in V  with given projection. □

Now we introduce the notations which will be used heavily in the following 
discussion. Those are Gaussian multinomial coefficients.

1
q -  1

[kUk -
k

2̂ · · · '̂71

- l]q[k 2]q . . , [l]ç.

W .!

(3.1)

(3.2)

(3.3)

P rop osition  3.2 Let k\,k2·, ■ · · -¡km be a sequence of dimensions of compo
sition factors of a filtration in V. The number of such filtrations is

k
k\ k,2 ■ ■ ■ k-n

.□

In the previous chapter, we have seen that every configuration of n fines 
in V  has a unique canonical filtration(Proposition 2.9). Also it is worth 
reminding that intersection of the configuration with the composition factors 
of its canonical filtration is semistable in that factor space. This relation 
enables us to determine the number of all configurations in terms of the 
canonical filtrations and the number of semistable configurations of given n 
and k.

We begin with grouping configurations according to their canonical fil
trations.

^ (n  fine conf. in line conf.s with canonical filtration F )  (3.4)

If we fix the dimensions of composition factors of the canonical filtrations 
by kfs  and the numbers of fines contained in those factor spaces by n,’s we 
can put equation 3.4 in a more formal language. In the following discussion 
Rq[n,k)  denotes the number of semistable configurations of n fines in a k 
dimensional vector space.

20



T h eorem  3.3

w ?  = E
»T-l + »1̂2 + · · · + = 'Tl+ 2̂ + · · · + = k
^  > ^  > · · · >/c j 2  ̂m

k
Â2 · · · kf¡ 7

n
nin2 . . .n^

Proof: Left hand side is the number of all n line configurations in a k 
dimensional space. On the right hand side, we take sum over all canoni
cal filtrations. We fix the canonical filtrations with the dimensions of their 
composition factors and the preassigned number of semistable line configu
rations lying on those compositions. The Gaussian multinomial coefficient 
counts the number of filtrations with given dimensions of composition fac
tors. We construct a total of n lines by taking from each composition 
factor of dimension A:,;. The product of /¡:¿)’s determines the number
of possible constructions. However in the space V we have config
urations with given projections on the composition factors. And we count 
the possible rearrangements of n elements where the orderings of n¡ elements 
were already included in the term R,,(ni,ki) by the binomial coefficients.□

We know by theorem 2.12 of the previous chapter that, the sernistable con
figurations have trivial canonical filtrations. Hence we ca.n extract R,i[n,k) 
from the theorem above

R ,{n, k) =  [7] E
n\ + Tl2 + . . . + = n
/.'I + AC'J + ■ · · +EJL ILl > > n-OL·

k
k'l A>2 . . . 7

n
niri2 . . . Urn

g E . < j Y[R,i{ni, ki) (3.5)

where now the sum is taken over all nontrivial canonical filtrations.

What we have at the moment is a recurrence relation. For an explicit 
formula, we have to apply this to all pairs (n ,̂ ki) and to their decompositions 
and so on.

At this point we begin changing our notations. Having given the necessary 
motivations and explanations about the decompositions of u. and k with 
condition rii/ki > rii^i/ki^i, from now on we will denote the index of our 
sum with decompositions of the pair (?7, k). Let’s call the pairs cells and the 
ratio n/k slope of the cell. So our formula, will be denoted

k
R,{n<k) =  [ k ] : - E

(?ti ,/j] )(7l2, /c2)--*(7lmj^rn ) ^
k\ k-2 · · · k
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where the sum is taken over nontrivial decompositions of the cell (n, k) into 
smaller cells with their slopes strictly decreasing from left to right.

3.2 Normalized Hierarchies

The notion of a cell is still far from being enough to carry the successive 
applications of our formula. Hence we continue developing our notations and 
introduce the so called hierarchy.

Definition 3.4 A hierarchy J is a decomposition of the pair {n, k) into cells 
luith levels.

The cell (n, k) itself is the only cell of level 0. We decompose (n, k) in 
a. nontrivial way and call new cells as cells of level 1 . And we continue the 
process, dividing some of cells of level 1 into cells of level 2, and some of them 
into cells of level 3. We can stop at any step and call this decomposition 
a hierarchy. The cells that we stop decomposing are called atoms of the 
hierarchy. We denote hierarchies with bracket structures. For example

((m, ¿i), . . . , (n4, k.4))j =  ((ni, ¿-i), ((n2, ki), (ri3, ¿3)), («4, k.4)).

Each pair in a balanced pair of brackets denote a cell. We don’t use double 
brackets. Our sample hierarchy contains

(ni, A:i), (n2 +  n3,^2 +  h ) ,  («4 ,^4 )

(n2,k2),{n3,k3) 
( n i ,k i ) , . .. ,{n4,k4)

cells of level 1, 

cells of level 2, 

atoms.

Keeping in mind the motivation of defining hierarchies, we have to put a 
normalization condition on our hierarchies.

Definition 3.5 A hierarchy J is said to be normalized if for any cell

(n.,/;) =  {P'mi ^m))

the slopes of the cells (n,·, ki) of the next level decrease from left to right.

(3.6)
Tl{ ^
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Definition 3.6 We denote by NA{J)  the number of nonatom cells in the 
hierarchy J. The number (— is called the sign of J .

In the preceding notations, the formula in equation 3.5 can be given as

Proposition 3.7

R , { n , k ) =  ( - ! ) “ <■'>
k

ki A"2 . . .  kĵ
n

ni??,2 . . .r¿̂

The summation is condiicted over all normalized hierarchies.

Proof: The foregoing explanations leave no need for any further proof.□

We see that the new form of our formula depends mostly on the set of 
Loins of the hierarchies. If we fix the set of atoms and define a new coefficient

a{{n\, Aq), (712, h ) , . . .  , ^  signJ (3.7)
Jci ),(n2 ) y

our formula takes the form

./ib,y('/7,, k )  =  ) k \  '̂771 ))
{n-[ Jti) (?l2 ,h'2 ) ... (rirn ̂ krn )

k

k \  A'2 · · · k-n

11
77-1 ll2 . . . 77.,

i/L̂ t<j * JI l ( y : ; ( 3 8 )

3.3 Combinatorial Geometry of the Plane

Now we will discuss the geometric interpretation of the normalization con
dition and the coefficient a defined in 3.7. For easiness in notation we de
note an atom {ni,ki) by A*·. We represent a cell A -- (77̂ , Ay) by a point 
P (A )  =  [kr^Ur) on the plane R,̂ . Suppose we deompose A =  {n,k)  as 
in A =  (Ai, A2, · . . ,  A„i). This decomposition will be represented by a 
polygonal line F(Ai, A2, . . . ,  A „ ) ,  with consequtive vertices ig =  P(A<,:), 
A<,· =  (E i=i ki) ior 0 <  7 < rn and 7/0 =  (0,0).

Let’s apply this to a. normalized hierarchy J . We consider the first level 
decomposition

A =  ( A i , A 2, . . . ,  Ar).
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We keep our notations and denote the slope of a cell A  by //(A ).The normal
ization condition 3.6 assures that

/z(Ai) > /i(Ai+i).

This results an upper convex polygonal line when we join the successive 
vertices as described above.

In the same way, we can take the first level cell Ai and decompose it into 
cells of level 2 as in Ai =  (A ,i, A,-2, · . . ,  A,>i)· In the plane, process goes on 
by putting the point P (Aj ,  A 2, . . . ,  Ai_i, Aii) =  +  kn,n<i^i +m^) and
joining it to F(Ai_i).  We complete F? beginning at P(A<i_i)  and ending 
at P(A<i), by joining the successive vertices P ( A i , . . . ,  Ai_i, A,,·) 1 < i  <  r{. 
Again by the normalization condition 3.6 F? is upperconvex. We do this 
for every cell of J until we reach atoms. In the end, we get polygonal lines 
satisfying
1) Vertices of F' are contained in the set of vertices of F®·*·̂
2) A polygonal segment of F'+  ̂ connecting two successive vertices of F’ is 
upperconvex,
3) The first polygonal line F° is the line segment connecting the origin to the 
point P{A)  =  (¿,n). Furthermore the last line F·® is F(Ai, A2, . . . ,  Am) where 
A; are the atoms of the hierarchy J.

On this construction let D' =  D'{A\, A2, . . . ,  A„i) i > 0, be the polygon 
bounded by the lines F' and F°. We know by the properties 1 through 3 that 
F' intersects F° only at the endpoints. The difference z > 1 is a
union of convex polygons, one for each side of F*. Using those polygons we 
get a decomposition of =  D into convex pieces

D = (3.9)

The boundary of a piece Da consists of a side of some F*~̂  and a polygonal 
segment that connects the two ends of that side. So the decomposition 
in 3.9 is obtained by cutting D using some of inner disjoint diagonals of 
D i.e. cutting by some of its diagonals that entirely lie in D, connecting 
nonadjacent vertices and having no common points except possibly the ends.

For a closer look at the coefficient a of 3.7 we use this geometric in
terpretation. We have observed that the polygonal line corresponding to a 
normalized hierarchy intersects the line segment F° only at the ends. This 
motivates the following
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Figure 3.1: Normalized Hierarchy Represented on Plane
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D efin ition  3.8 The decomposition A =  (Aj, A2, . . . ,  A^) is said to be stable 
if the following relation for the slopes is satisfied

/^(A<t) > /i(A) 1 <  i <  m — 1. (3.10)

P rop osition  3.9 The coefficient a{Ai ,A2·, ■■■ ,A.m) is nonzero only for stable 
decompositions A =  (Ai, A2, . . . ,  A^) into atoms Aj and in this situation

a(A i ,A 2 , . . . ,A ^)  =  h + { D ) - h - { D ) ,

where h'^{h~) is the number of partitions of the polygon D into even(resp. 
odd) number of convex pieces by the disjoint inner diagonals.

P roo f: We have a sum in 3.8 over fixed sets of atoms of normalized hierar
chies and a is defined as sum of signs of a number of normalized hierarchies 
with fixed set of atoms. Normalized hierarchies give stable decompositions 
as explained so a can not be nonzero for a nonstable decomposition. We have 
one-one correspondance between the normalized hierarchies and the subdivi
sions of D by its disjoint inside diagonals. The cells of positive level which are 
not atoms correspond to the diagonals of the decomposition. Each diagonal 
means one convex piece in such a decomposition.

ngn[J) =  (— ( — convex pieces in decomposition D j

hence,

a(Ai ,A2, . . . ,A , „ )  =  h + { D ) - h - { D ) . n

We still want to find the coefficient a in explicit form. We get help of the 
combinatorial geometry of the plane to find the relation between h'^[D) and 
k- (D) .

Let D be a plane polygon no three of its vertices lying on the same line. 
A diagonal of D is a line segment connecting nonadjacent vertices of D and 
lying entirely in D.

P rop osition  3.10 For n > 3 any n-gon D contains a diagonal.

P roo f: D contains a vertex B  at which the angle is less than tt. Take the 
adjacent angles A^B^C with this order. Now, if we can’t draw a diagonal 
from 5  to a vertex D ^  A, C, then AC  is a diagonal. If not, D is a triangle. 
□
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Corollary 3.11 A n y  n-gon D  can be divided by its disjoint inside diagonals 

into triangles. The num ber o f  such triangles in an y such subdivision is n—2.Ü

Now, we want to learn more about the subdivisions s o i  D  into any convex 
pieces. We denote by S  the set of such subdivisions. This is an ordered set 
and s <  t means s is inscribed in t. So, the minimal elements of S  are 
triangulations.

The key to find a in explicit form is the theorem following the next two 
propositions. We will imitate the steps in [Klyl] to prove this theorem. For 
this we develope the notations. Let i)  be a polygon and a be a side of D  fixed. 
We denote by A =  A(a) the set of all convex polygons that are inscribed in 
D  and contain the side a. By we denote the number of sides of a polygon

Proposition 3.12 F or any convex polygon D , we have

56A

Proof: We fix the side a, hence for a k-gon 6 G A(a), remain k — 2 vertices 
which can be choosen among n — 2 vertices of D . So we have (jjZl) k-gons 
in A (a). If we take sum over k

k-2

5eA k = 3

Proposition 3.13 F or any polygon D , we have

E ( - i f  =  - i . (3.11)

Proof: By induction reasons, we take 3.11 valid for m-gons where m  <  |D|. 
Let V  =  be the set of vertices of D from which we can see the side
a — AB. Take all theese vertices Ci, C2, . . . ,  Cm in the order of increasing of 
the angle ABCi and consider the polygon

D{a) =  AC, . . . CmB .
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By construction it follows that if i  G A (o) then it is contained in D{a).  
Hence, if D{a)  7̂  D  then equation 3.11 follows from the induction hypothesis. 
If we have D{a)  =  D for all a then D is convex and 3.11 is valid by the 
previous proposition. □

T h eorem  3.14 For any n-gon D

h+{D) -  h- {D)  =  ( - 1)” .

P roo f: Any subdivision a G S(Z)) contains unique polygon i  G A. Hence

x(D)  = h * ( D ) - h - ( D )

=  E  ( - 1)'"'

= E E (-1)"'
5eA 6eceT.(D)

= -E  n x№).
i€A DieD\S

The product is taken over all components Di in the complementation D\S.By 
induction reasons we assume that the theorem is valid for the polygons Di 
hence we have

n  x '№ ) =  n  ( - i r · !  =  ( - ı Γ w « ı - ^
DieD\S Di€D\6

Therefore

x(i’) = - E  n  x№) = - E ( - ir '" ‘'
seADieD\s seA

= (-1)'°'(-E(-1)'‘')
=  ( - i )I^Ld

If we put the coefficient a in its place we get

R , ( n , k ) =  E  ( - 1)'
(nojko)(n-[ A/qÂi . . .

n
TIqTIi . . . 77-75

E . ̂  kin.

where the sum runs over all stable decompositions of
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Theorem 3.15 For coprime n and k, Poincare polynomial of the moduli 
space Cn,k is given by

PuA q) =
1 E ( - i r

q  { q  1 )”  ̂[^]g! (no,fco)(ni,A:i)...(nm,fcm)

( ”V n o n i  ...Urn

k
koki .. ,k„

n (t ,)fS .12)

where the sum is taken over all stable decomposition of [n,k) .

P roo f: The sum on the right hand side is the number of all stable n line 
configurations in a k dimensional vector space. A stable configuration has no 
pointwise automorphism other than the scalar ones, so we divide the sum by 
the cardinality of PGLk to get the number of rational points of the moduli 
space. □

3.4 Sum over Geometric Terms

The decomposition in index of sum in 3.12 can be put in geometric terms. 
We denote by  ̂ x n a rectangle with horizontal dimension k and vertical 
dimension n units. Diagonal of the rectangle is the line segment that con
nects the South-west and the North-east corners. Also we will use the paths 
r  C k x n  running from South-west to North-east which lie over the diagonal. 
Our paths won’t be allowed to move in the directions other than north and 
east. The points where the path changes its direction from east to north will 
be called a vertex. We can denote such paths with a decomposition as in

ilo + · · · + vim = VI,

0̂ T +  · · · T km =  k,

where k{ > 0 is a horizontal step and > 0 is a vertical step of the path 
r. Having introduced these notations, we can identify the decomposition of 
(vi,k) in the index of the sum in 3.12 with our paths. And the area 5'(F) 
over the path F is

S ( r ) = E * ! . n i
i < j
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So we can rewrite Poincare polynomial 3.12 as

Рп,к{я) =
1

E ( - i y /uQ̂ l · · · 7̂?
n

TIq1'1\ . . . TljYi

where the sum runs over paths as described above.

3.4.1 Reduced Steps for Paths

We will try to achieve a simplification in 3.13 by excluding the successive 
horizontal steps of Г i.e the zero vertical steps щ. Calculations below are 
obtained from Kly2.

We call our first special polynomial in q quantum Stirling numbers. For 
q =  I they give the classical Stirling numbers of the second kind ,?(п, A';)(equal 
to the number of partitions of a set of (n +  k) elements into к nonempty 
clusters [Gon]). We define quantum Stirling numbers by the following explicit 
formula

: = — i r . ·—q 2 [fc]̂ ! i=o
n-\-k
Ч

к
i я

Sq{n, k) has the following properties which follow from the recurrence relation 
given below.

Proposition 3.16
1)  Sq{n,k) is a unitary polynomial in q with integer coefficients of degree 
n{k — 1) and free term
2) Sq{0,k) =  =  1 and Sq{n,k) ^  0 only for  k > 0,n > 0 with only
one exception ¿'^(OjO) =  1.
3) Recurrence relation:

Sq{n, k) =  Sq{n, k -  1 ) +  [k]qSq{n ~ l , k ).0

We’ll show that we can write the polynomial Pn,k{q) by using Sq{n, k) in 
the following form
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Theorem 3.17

P  / \ _  1 \m S ( D ^l) · · · fcm)
( ? - l ) ‘ · ’ r (io + *i))!("l + + *:™)!

(3.14)
where the summation runs over all paths

r  . 77-q , /l̂q j Tl\, J\>\  ̂  ̂ '^m 5

above the diagonal of k x {n — k) rectangle with successive vertical and hori
zontal steps Ui > 0 and ki > 0.

P roo f: After a simple cacellation the formula 3.13 becomes

1 Q(r\ f  Tl \ Π¿[ г̂]g*
Pn,k{q) -  k[k-i) —q 2 _  ijA, i pE C - i r ? * " · ’ r i o U i  . . . T i m  J

without any change in index of the sum. Now let us consider a. vertical step 
a > 0 of r  followed by a number of horizontal steps bi of total length b =Y^bi
having zero vertical steps between them. Most parts of the formula depends

[6]“only on a and b. Instea.d of only we have

E  ( - 1)̂
i'O+i'l +...+bs—i>

b
P

I — bo=b-p

E (-1)·
The following claim simplifies our job

1̂ ? 2̂) · * · 5

Claim 3.18

E
bl+b2+:.+ bs=P

P
b\,b2, . . ■ ,bs

P r o o f  o f  claim : Left hand side is the coefficient of in the following series

, 1 -1

E u

k>0

U

p>0 \p\r

The last equality follows from the quantum binomial formula.

p>0

n
P

=  0, n > O.n
9
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So we arrive to the quantum Stirling numbers

N a

1 ■ b

L̂J9· p>0

b(b-l)
=  q 2 Sq{a-b,b)

which allows us rewrite 3.13 as follows

p  i_(q\ __  __________ f o‘ )  ^qi^O ^ 0 )  ^ o )  · · · Sgirim fcm,,

(9 — r ■ ■ ■ ^”1·

The sum runs over all paths

r  . 77-Oj ^0) ) '̂15 · · · )

above the diagonal of the k xn  rectangle with positive steps both in vertical 
and horizontal directions. Since Sq{n — k,k) =  0 for n < /c, we may suppose 
that Hi > ki. This makes it natural to consider instead of F a new path F 
in k X  {n — k) rectangle with the same horizontal steps and reduced vertical 
steps Hi — ki. Using

5(r)-5(f)=g)-E Q ·)

we arrive to the formula 3.14. □

We tried to get a formula without zero vertical steps of the paths but 
in the end the reduced steps rii still can be zero. So we attack once more 
to the same problem with new polynomials. We introduce another quantum 
numbers (i.e. polynomials in q)

Fq{n,k) =
i< k  \ n - t l j

with the following properties.

Proposition 3.19
1. Fq{n, k) is a unitary polynomial of degree n { k— 1) with integer coefficients 
and free term ( —1)^~F
2. F ,(n , A;) =  0 except n > 0, A: > 0 and

F,{0,k) = { - l f - ' ,  F,{n,l) = i.
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3. The following symmetry relation holds

Fg{n,k) _  Fq{k,n)

4 . The following duality identity holds

Y^/ 1 S(n 0̂) · · · Pq { ^ rr,i km)  , ■.\fc- l( >̂ )̂
p {riQ ko)\ . . . (nm F km)\ {u +  k)\

xohere the sum runs over all paths

r  . 77-0 y k() y . . .  y Tlyrji y k j y i

from SW  to NE corners of k x n rectangle with vertical and horizontal steps
n;lykj >  0. Here 5 '(r) is the area above F and

=  j  =  i / ,

is the dual polynomial to Fg. □

T h eorem  3.20 In the previous notations

n r \ y\m ̂ S(D ^gi^Oy ko) · ■ ■ Fg(nmy kyn) /o ic\= ( T n p r r  E ( - 1 )  i +  (3-15)

where the sum runs over all paths

F ; 77oy koy y ri\y k\y. . .  y n̂ ,̂ kyĵ

above the diagonal of k x (n — k) rectangle xoith successive vertical and hori
zontal steps rii >  0, ki >  0.

P roo f: The proof is similar to calculations in the previous theorem.Let us 
consider a segment of the line F consisting of a vertical step of length n fol
lowed by a sequence of horizontal steps k{ of total length k =  ^{ki .  Then 
summation over all partitions ki of k changes in the formula 3.14 each mul
tiplier to the sum

E  ( - 1) ' i
ko - \ -k i  - \ - . , . - ^ks—k

E  ( - 1)

n + k \
71 +  ¿0, A:i, . . . ,  /

k — ko

Sq ̂ 71, A/̂  —

—k —ko
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We can evaluate the internal sum

1̂+̂ 2+· . .+ k s = k -k o  V  ̂ 2̂, · · · , /
A;!(coefficient of z*' in 1 +  (1 — e )̂ +  (1 — +  . . . )  =

Â;!(coefficient of in e •̂) =  (—1)̂

So we get F polynomials

E (-ir (
—k V0̂ +̂ i +...-\-ks —

n +  Â:
n +  ¿0 ) 5 · · · ) 5̂

Sqî Tly fco) —

i<k V + z

and we can rewrite the formula 3.14 as stated in theorem. □

3.5 Mass Formula

In this section we give one of the applications of Poincare polynomial in 
[Kly2]. Mass formula counts the equivalence classes of codes with an assigned 
weight reciprocal cardinality of automorphism group of the class.

In the previous sections we dealt with the space Cn,k of ordered configu
rations. Both from geometric and code theoretical points of view it is more 
natural to deal with unordered configurations (codes differing by a permuta
tion of coordinates are usually identified). They may be treated as points of 
the factor Cn,k/Sn with respect to natural action of the symmetric group Sn 
by permutation of points. This factor is usually a singular variety. Besides a 
rational point of this factor doesn’t necessarily correspond to a configuration 
of rational points.

In the following theorem we deal with unordered configurations of rational 
points upto projective equivalence rather than with rational points of the 
factor

T h eorem  3.21 For coprime n and k the following mass formula for un
ordered stable n point configurations S C P*~^(F,) holds

1 Pn,k{(l)
n!
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P ro o f: Let E € Cn,k be a stable configuration of n points in It corre
sponds to an equivalence class of codes. If we disregard its order and consider 
the unordered configuration S C we get n! different orderings but 
different classes of stable codes. Sum over all such unordered configurations 
of stable n point configurations gives us the number of stable [n, k]g codes 
upto equivalence which is given by Pn,k{<])· Hence we have

n!
^  |diuiS|

E — —E \AutT.\

=  Pn,k{q) 

Pn,k{q) □
n\
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Chapter 4

Asymptotic Distribution of 
Stable Codes

We devote this chapter to an application of Poincare polynomial Pn̂ k{<j) 
of theorem 3.15.This will be the achievement of proof of the main theorem 
in this chapter:

T h eorem  4.1
^{stable[n, k]gCodes) 

i,/;^oo ^[all[n, k]qCodes)

under the constraint

e < — < 1 — e 
n

0 < e <  1.

(4.1)

(4.2)

In words, we want to show that asymptotically all codes whose parameters 
n and k satisfy 4.2 ,which in turn is to say that almost all codes, are stable.

4.1 Poincare Polynomial

In chapter 3, for coprime n and k we have obtained the Poincare polynomial 
of the isomorphic varieties

G{n,k)HT^  ~
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[proposition 2.4]. This polynomial gives us the number of stable k spaces of 
upto equivalence under the action of the multiplicative torus T " . The 

following proposition shows how Poincare polynomial Pn,k{<]) is involved for 
our purposes in this chapter.

P rop os ition  4.2 The limit in theorem 4-1 is equivalent to

1)” ·^
n
k

(4.3)limn̂ k—̂oo

luhile the condition 4-2  is respected.

P roo f: We need to find the number of stable [n, k]g codes. They are counted 
upto equivalence under the action of T" by Pn,k{(j)· In each orbit we have 
(g — 1)” “  ̂ codes, because q — 1 elements of T ” act trivially on subspaces. 
Hence we have

7̂ (a// stable [n, k]g codes) =  Pn,k{<l){(l ~  1)” “ .̂

The Gaussian multinomial coefficient counts the number of rational points 
of G{n, k) over the field F,.

4j {̂all [n, k]q codes) =
n
k ■* 9

So we have the equality

4̂ {allstable [n, A;], codes) __ Pn,k{<l)iQ ~  l ) " “ ^
4l {̂all[n, A:], codes) n

k

which shows the result.□

4.2 Poincare Duality

The limit in proposition 4.2 involves powers of q, the cardinality of the ground 
field. Poincare duality will help us continue the calculations in q =  K

37



Proposition 4.3 The limit in theorem 4-1 is equivalent to

-  9)“ · 'lim
n,/:—>-oo

xoith keeping the condition Ĵ .2 on n and k.

-

n
kL J9

(4.4)

Proof: Both Pn,k{<}) «nd the Gaussian multinomial coefficient in equation
4.3 are Poincare polynomials hence we can use their selfdualities

n
k

^ ^ dim{ G{ n,k) ) n
k

1
q =

If we substitute this to equation 4.3, we get

-  9)” · '  PnAq)(i  -
n
k

n
k(J

-jk̂TX — /c ̂

whose limit under the condition 4.2 is equal to that in 4.1 by proposition 4.2.
□

4.3 Asymptotics of Quantum Coefficients

Definition 4.4 The function
OO

h{q) =  11(1
¿=1

is absolutely convergent for [̂ l <  1 and is called the Etha function of 
Dedekind.

Using Poincare duality and the Etha function, we can prove the following 

Proposition 4.5 Theorem 4-i is equivalent to

=

provided n, k are subjected to the constraint in 4· ·̂
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P ro o f: We investigate

limn,k—̂oo
n
k

where A:/n is seperated both from 0 and 1 by 4.2.

n
k

n L , ( l - i · )
n ‘ = . ( i - 9 ' ) n r = . ( i - ? ' )

(4.6)

Since n — k too tends to infinity as well as n and k do, we have

1
limn̂ k-̂ oo

n
k

Hence we are done by proposition 4.3. □

4.4 Formal Limit

We will carry out the calculations in new quantum numbers defined by 

P rop osition  4.6
1) aq{n,k) is a polynomial in q with integer coefficients.lt has degree kn and 
free term 1.
2)  aq(n,k) satisfies the recurrence relation

cr,(n, k) =  q''cTq{n, k - 1 ) -f (1 -  q'")crq{n - l , k ) .

P roo f: Those follow at once from proposition 3.16 items 1 and 3. □

Using a polynomials, we will put Pn,k{<i) in a more convenient form for 
our objectives.

P rop osition  4.7 We can write Poincare polynomial of moduli space C\,||

n 1 \m S* (D  ki) . . . aq{nm, km)
=  (1 _  f  ( - ' )  « („ „  +  i„)!(n . +  4 , ) ! . . . ( „ , „  +  i „ ) !

xohere index of sum is the same as in equation S .lf hut

S*{T) =  k { n - k ) - ^ k i n j
i < j

for any path T : no, ko, ni ,k\, . . .  ,nm, km-
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n-k

Figure 4.1: S*{F)

P roo f: We begin with formula given in 3.14 and use the definition of cr 
polynomials. After multiplying and dividing each Sg{n, k) by ^"(^“ 1̂(1 — 
we get the result at once by Poincare duality. □

We need the following important estimation on 5'*(P).

L em m a 4.8 For any path T in index of sum of equation f . l  we have

,s -(D  >  „  _  t  + 1 _  ( i ]

except for  the trivial one

To : n — k, k with 5*(P) =  0.

P roo f: A path P has vertices at integer pairs (x ,y)  over the diagonal of the 
k X {n — k) rectangle. We fix such a vertex and try to estimate the area 
{k — x)y  from below. To find the minimum of this value, we have to choose 
y as close to the diagonal as possible over a given x.

,̂n — k. .
y =  [(—̂ )a:] + l

This choice works because there is no vertex on the diagonal, except the two 
ends of the paths. So, the area enclosed is

This quantity becomes smallest with the choice x =  k — 1 and we get the 
result. □

L em m a 4.9

lim c7o(n — k.k) =  —73- 
n , k - ^ o o  T ] { q )

provided conditions of equation f .2  are respected.
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P ro o f: The crucial point is observing that

' U 0 ( 1 - 9 ) · .

^ i ( 2 ( n - f c ) + i + l ) ^ j ^  _  gk-i^n

Hence we have

( l - j ) ( l - / ) - - ( l - 9 - ‘ ) ( T -  9-) ■.. (1 -  90(1 - 9) . .  · (1 -  9-‘-

We estimate the sum on the right hand side.

< 1

( 1 - ? 0 ( 1 - 9' ' “ ·)'  ^(9) Ê^ -

p :n —k k 
=  1___

9(9-) ¿r

The sum is convergent and the expression gets exponentially small as we let 
n and fc to 00 under the constraint of equation 4.2. Hence under the given 
conditions, we have

(1 -  i
lim <7a(n — k^ k)=  lim 7-—  — .n,fc-oo ' n,fc-oo (1 -  <7)(1 -  q^). — q )̂ q[q)

□

Now we show that limit in proposition 4.5 exists as formal power series.

P rop osition  4.10

lim (1 - 9)” P n MTiyk—̂oo

keeping the conditions o f  equation J^.2 on n and k exists as form a l p o w er  

ser ie s  and is equal to that o f  .

P roo f: The previous two lemmas left little to show. By lemma 4.8 we have

(1 -  9)"  ̂Pn,k{q)  =  -  k,  A:)mod degN =  n -  k +  [ j ]  -  1.

If we take limit we get

as formal power series by the lemma 4.9. □

We have to make finer estimations on 5'*(P) to show that the value of 
this limit as real number exists and is equal to
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4.5 Genuine Limit

It is in this section that we prove theorem 4.1 in full. Once more we enjoy 
new quantum numbers (/? and new form of the Poincare polynomial Pn^k[q). 
We introduce new polynomial in q by

P rop osition  4.11
1) ipq(n,k) is a -polynomial in q o f degree nk, with integer coefficients and 
leading coefficient (—1)"+^“ .̂ It has constant term 1.

4 =  0 n +  ij
fn , i ) . (4.9)

3) ipq{n, fc) =  0 except for n >  0, k > 0 and

=  (1 -  q f

-1) (pq[nffi) satisfies the symmetry relation

<pq(n,k) =  ipq{k,n).a

P rop osition  4.12 We can express Poincare polynomial Pn,k{g) In terms o f 
ip polynomials as

n ■,\mS'(r)f<!{^0,ko)‘r’qi'ni,kl)...iPqinm,km),..f.^
( 1 - 9 ) " - ^ ^ ' '  ( n o  + / ? o ) ! ( " i  +  ^ i ) !  ·  ·  ·  ( ^

where index of sum is the same as in theorem 3.20.

P roo f: Similar to proof of proposition 4.7, we take Poincare polynomial 
given in equation 3.15 and multiply each F,(n, k) by (1 — qYq^^^~^f We get 
the result by Poincare duality. □

P rop osition  4.13 I47ien n and k are under conditions of equation f .2

lim ipqlnffi) =  
n,k->oo^^  ̂ T)[q)
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P roo f: We use boundedness of (r(n, k) (lemma 4.9) and the identity given 
in equation 4.9 to show that ip and cr behave the same for big n and k.

¿=0 \ ̂  i"  ̂/

=  a,-(n, k) +  I  k -  j )

Now we show that under the given conditions, the surri on the right hand 
side approaches to 0.

I I  k -  ;)|

^  ^  E  I  9”'  =  ^((1 +  9” )"+^ -  1)

=  +  r )  +  (1 +  +  . . .  +  (1 +

< A { r ) { n  +  k - l ) { l + r r ^ ^ ~ '

-  e x p {n ( - l o g g  +  ^  +  (! +  / ? -  ^) log ( l  +  (7” )}.

We see that as n tends to infinity the identity approaches to 0. Hence under 
the conditions of equation 4.2 we have

1
lim (pg{n,k)= lim o-q{n,k) =

i , k —*oo n ^ k - ^ 0 0

by lemma 4.9. □

We have seen that theorem 4.1 is equivalent to showing 

lim {1 -  q)^-^Pn,k{q) =n,/c—)-oo V\9)

where n and k are under the conditions of equation 4.2 (Proposition 4.5). 
This is partly shown by proposition 4.10. We prove theorem 4.1 by showing 
that limit above exists as a real number and is equal to

P rop osition  4.14

where condition in equation 4·^ is respected.
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Rm/(2(1-R))

n-k

Figure 4.2;

P roo f: Our estimations will be highly depending on the number (in +  1) of 
steps of the paths ■ We recall that there is only one path

To =  n — k, k

with one step. We seperate the particular term corresponding to Fq from the 
rest.

(1 -  1. ®  =

=  (
=  - k , k )  +  E E ( - i ) ” «*·*''"* (

m Tm V

TIq -{■  ko . . .71 m  11
</ig(no, A;q) . . . ^q{j7rai ^m)

n
n.Q ko . . . Tim +  k„ ^o) · · ·

We will estimate the sum on the right hand side. First we do this for big 
values of m. Consider division of the k x n — k rectangle as in figure 4.2.

Since the paths of the formula have positive steps, then for a fixed m a 
path F,n niust have a vertex in the inner strip. Such a vertex help us for the 
following estimation

The number of all paths above the diagonal of the (k x n  — k) rectangle (for 
?r, k coprime) running from Southwest corner to Northeast is given by

n\k j
(4.11)
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which is less than 2". Hence we can estimate the sum above in the following 
way

| ^ ^ ( _ i r / - ( r m ) "  \ip^no,ko). . . ipg{n^,k^)\
m \ 0̂ I 0̂ · · · r f̂ m )

772
=  ^  exp ((m  +  1) log .4 +  n log 2 +  n log(m +  1) -  — {k -

mR
2  ̂ 2(1 -  R) ) log q)

V - / /1 / , 1  ̂ rnR\ogq rn^Rlogq (m +  l ) l o g A ,=  E e x p  (n(log(m +  1) ---------^  +  log 2 + -------------------).

The information we need is in the first two terms of the exponent above. As 
n tends to infinity the rest becomes small comparing to them. There exists 
a constant

mo - - mo{q, R)

such that for m > 7r¿o,

lEE(-i)V"'"'(
m Tm. V

n
72o +  +  kr,

9̂ 7(̂ '0? Âo) · · · A%7x)| — 0(72).

We turn our attention to those paths with m < rn̂ . We choose a 
number M  satisfying

log(m.
-Rlogi ■

Now we consider the two cases
1) Tm has a vertex in the central strip described in the figure 4.3,
2) r„i has no vertex in the same strip.

Beginning with the first case, we have estimation for 5'*(rm) as in

5 * (r „ )  >  M(k -

Together with the reasonings above we have

I  E  E ( - i ) V ‘ ' " ' ( „  ,  ,  \
m < m o  Tm \  n o  ICo . ■ . U r n  K n

<  +  1)"

^q{no,ko).. .q:>g{nm,km)\

m < m o
RM

=  exp{n log(2) +  (mo +  l ) l o g ( A ) - M ( f c - ^ ) l o g ( 9) +  nlog(mo +  l ) }
m<mo

RM^ mo +  1
=  exp{n(log(mo +  1) -  R M  log(?) +  _  log(g) +  — - — log(A))}.

77l<mn  ̂ '
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MR/(1-R) 
■<- ·>

n-k

Figure 4.3:

Again we read from the first two terms of the exponent that by the choice 
4.12 of M  we have exponentially small sum for the paths of the first kind 
described above.

The latter case, where we deal with paths having no vertices in the central 
strip, helps us estimate Binomial coefficients. In this situation we have

n [ui +  ki) < 2M  for some i

hence.

n
TiQ -\ -  . . .  n m +  k77

< nl
(ĵ m “1“ ^m)·

< n{n — 1) . . .  (n — 2M  +  1).

The last inequality means that the Binomial coefficient of the Poincare poly
nomial is a polynomial in n of degree at most 2M.

We have another estimation for the number of paths in this case. Since 
the steps of the paths are positive, the number of steps can not be more than 
2M  -f 1. The number of paths in the upper strip is certainly less than

M

The number of paths which can be constructed in the triangular region of 
the lowest strip is bounded. Hence the number of paths in this case is less 
than the value of a polynomial Rm Í^) in k whose degree is no more than M.

It seems that, in this case our estimation for 5'*(r) given by

S*{T) >  n -  +  [^] -  1
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(lemma 4.8) is sufficient for our purposes. 

Our final estimation is as follows

n
? (  n o  +  y t o  . . .  J

<  A ^ °+ ^ n {n  -  1 ) . . .  ( n  -  2 M  +

~  e x p { - (n  -  A; +  [ - ]  -  1) log(9) +  2Mlog?z +  (mo +  1) log A +  Mlog  A;}

[a 1^ f / /, r> , iRJ \ 1 / \ , 2M lo g n  MlogA: ( m o + l ) l o g A , .<  exp{n -  1 - R + ^ - - )  log (? + -------- ^  ^  +  i - 9 ^   ̂ ^—  }
K n n n n

As n tends to oo the terms in the exponent except the first tend to 0. The 
sum is exponentially small and tending to 0.

In the end keeping the condition 4.2 on n and k we came to the point

(1 i(?)  =

lim (1 -  9)“ - 'P „ ,t (9) =
n^K-^OO

(fg{n — k,k) +  o{n)
1

v{q)

the previous lemma. □

Theorem 4.1

r „  # (s ia 6/e[n, A;],codes)  ̂
г,/!-oo # (a //[n , A:],codes) ^  ^

under the constraint

e < — < 1 — e 
n

0 < e < 1.

P roo f: We have shown by proposition 4.5 that theorem 4.1 is equivalent to

provided n, k are subjected to the constraint in 4.2. This is proved by the 
previous proposition, hence we are done. □
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Appendix A

Examples of Poincare 
Polynomial and Mass

In this part, we give examples of Poincare polynomials of the varieties Cn,k 
for different choices of n and k. Also masses of stable [îr, k]̂  codes for a 
variety of ?r, k and q are shown in a table.

We give also list of a Maple program which evaluates Poincare polynomial 
of the variety Cn,k for given n and k. Ibrahim Ozen is highly indebted to 
professor Alexander A. Klyachko for providing this program. It is possible 
to evaluate Pn,k{<l) even for noncoprime n and k by this program. We have 
made use of it to give examples for this case too.

A .l Examples of P n ,k { < i)

Ps.ri«?) =  +  5 Ç +  1

P7,2(ri) =  + 7 9̂  + 22 + 7 9 +  1

P7_3(q) =  g6^79^ +  29(?'‘ +  6493 +  29 92 +  7 ç +  1

P s ,3 (q) =  /  +  8 9  ̂+  37 9® +  121 +  227 9  ̂ +  121 +  37 +  8 9 +  1

P9,2(q) =  9® +  99 '  +  37 9  ̂ +  93 9  ̂ +  3792 +  99 +  1

P 9,4(q) =  9'"* + 9  9^1+46 9' ° +  175 9®+ 506 9» +  1138 9^+ 1727 , 9  ̂+  11389^ +

48



506ç  ̂ +  175ç3 +  4692 +  9 ç +  1

Ріо,з(q) =  ç ' 4 10 9 І 4 56 9'° +  221 9® + 6819« +1608 9̂  +  2527 9® +1608 9̂  +  
681 9^*+221 9З + 5692+ IO9 +  I

Pii,2(q) =  9® + И 9̂  + 56 9® +  176 +  386 9̂  + 176 9̂  +  56 9̂  +  11 9 +  1

Pii,3(q) =  9̂ " +  119’  ̂ + 679^2 ^  2879" +  958 9'° +  2630 9̂  +  56 56 +
8383 9̂  +  5656 9® + 2630 9® +  958 9̂  + 287 9̂  + 6 7 9̂  +  119 + 1

Pii,4(q) =  9̂ ® + 11 9̂  ̂+ 67 9̂ ® +  298 9 "  + 1069 q *̂ + 3257 9̂ ® + 8484 9 "  +  
18801 9 "  +  34202 9̂ ° + 44937 9̂  + 34202 9» + 18801 9̂  + 8484 9® + 3257 9® +  
1069 9  ̂ +298 9® +  67 9  ̂ +  I I 9 +  1

Pii,5(q) =  9̂ ° + 11 9’® +  679̂ ® +  2989" + 10809̂ ® + 3313 9̂ ® +  8770 9 "  +  
20253 9̂ ® +40352 9^ + 67279 9^+84792 9̂ ° +67279 9440352 9® +20253 9̂  +  
8770 9® +  3313 9® + 1080 9 4  298 9® + 67 9® + 11 9 + 1

Pi2,5(q) =  + 12 9"̂  + 79 9®® + 377 9®i + 1457 9̂ ® +  4824 9'® +  14078 9'® +
36794 9 "  +  867489’® + 183912 9 "  + 342941 9 "  + 536640 9’® + 644959 9 "  +  
536640 9’ ’ +  342941 9 "  +183912 9® + 86748 9® + 36794 q  ̂+14078 9® +4824 9® +  
1457 9̂  +  377 9® + 79 9 4  12 9 + 1

Pi3,2(q) =  +  13 9 4  79 9® +  299 9̂  + 794 9® + 1586 9® + 794 9  ̂+ 299 9® +
799® +  ІЗ9 +  1

Pi3,3(q) =  9̂ ® +  13 9 "  +92 9’®+ 456 9’® + 1756 9 "  + 5552 9’® + 14926 9 "  +  
34243 9 "  +  63923 9 "  + 87518 9̂  +  63923 9® + 34243 9̂  +  14926 9® + 5552 9® +  
1756944569® +  929® + ІЗ9 +  1

Pi3,4(q) =  9̂  ̂+ 13 9®® + 92 9 "  + 469 9 "  +  1913 9̂ ® +  6592 9 "  + 19841 9’® +  
53055 9 "  +  126936 9’® + 270975 9’ ® +  509227 9 ’4  808616 9’® +  988720 9 "  +  
808616 9 "  +509227 9’®+270 975 9®+ 126936 9®+53055 9 4  19841 9®+6592 9® +  
І9ІЗ9 44699®  + 92 9 4 1 3 9  +  1

Pi3,5 (q) =  9̂ ® +  13 9̂  ̂+  92 9̂ ® + 469 9̂ ® + 1926 9®'' +  6749 9̂ ® + 208819" +  
58256 9 "  +148257 9̂ ® + 346090 9 "  +  740967 9 ’® +14418619" + 2497242 9’® +  
3688314 9’ ® +  43072979" +  3688314 9’® + 2497242 9 "  +  14418619" +  
740967 9’ ° + 3460 90 9® +148257 9® + 58256 9̂  + 20881 9® + 6749 9® +1926 9 4  
4699®+ 9 2 9 4  ІЗ9 + 1
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A.2 Examples of Masses of stable [гг, k]q codes

q=2 q=3 q=4

Мз 2̂Ія)
J_

_24_
J_

^ 4,2(9) _5_

^4,з{д) 1_
_21_ J¿±.

M s M 1
120

1
120

1
120

^ 5,2(9) _5_
24

37
120

^5,3(9) _5_
24

37
120

AÍ5,,(í ) 1
120

1
120

1
120

^6,1(9) 1
720

1
720

1
720

^6,2(9) X
le 36

37
141-

^^6,3(9) X
48

65
144

259
240

^̂ 6,4(9) X
_iX

X
36

37
И 4-

^^6,5(9) 1
720

1
720 720

^̂ 7,1(9) 1
5040

1
5040

1
5040

71/ 7,2(9) 5
144

X
72

31
144

^̂ 7,3(9) 31
112-

97
_72_

7759
jegXL

^7,4(9) 31
112 _72_

7759
ЛЗШ.

^̂ 7,5(9) 5
144 XX

31

M7ß{q) 1
5040

1
5040

1
5040

^8,1(9) 1 1
40320 40320

1
40320

71/ 8,2(9) 5
384

7
144

155
1152.

71/ 8,3(9) 39
128

2927
1152

5129
384

^8,4(9) 465
896

485
72

131903
2688

^8,5(9) 39
128-

2927
1152

5129
384

Ms,e{q) 5
384

7
ЛИ..

155
1152

^^8,7(9) 1
40320 .iQ.320 40320

/̂9,1(9) 1 1
36288.0- 362880 302880-

71/ 9,2(9) 53
10368

251
10368

839
10368

71/ 9,3(9) 91
384

38051
10368

35903
1152

^9,4(9) 13135
8064

447911
10368

208822469
362880

71/ 9,5(9) 13135
8064

447911
10368

208822469
362880

^̂ 9,6(9) 91
384

38051
-Ш368

35903
1152_

^̂ 9,7(9) 53
10368

251
10368

839
юз.оа.

71/ 9,8(9) 1
3018Ж· Д-62880

1
362880
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^ ıo ,ı(ç )
q-2

1
.̂23300

q=3

3628800

q=4

-3628800
^ 10,2(9) 53

-3A6.60.
251

25920
839

20736
^ 10,3(9) 4579

20736
115651
20736

1477351
.20736

^ 10,4(9) 11933
3840

2522407
12960

107557223
20736

^10,5(?) 81437
16128

54197231
103680

71208461929
3628800

^ ıo ,6(ç) 11933
3840

2522407
12960

107557223 
■ 20.736

^ 10,7(9) 4579
20736

115651
20736

1477351
20736

^10,8(?) 53
34̂ 60-

251
■25g20

839
20736

^ 10,9(9) 1
3628800 3628800

1
..3628800_

1 1
39916800 39916800

1
39916800

^11,2(̂ ) 3
6400

979
259200

9953
518400

^ 11,3(9) 3263
20736

144101
20736

321073
2304

^11,4(9) 1303
256

15734927
20736

853191289
20736

^11,5(9) 2000669
80640

516049829
71280-

26824927062749 
39916800

^11,6(9) 2000669
80640

516049829 
71280

26824927062749 
-3-9.916800

^11,7(9) 1303
256

15734927
20736

853191289 
20736

^11,8(9) 3263
20736

144101
20736

321073
2304

^ 11,9(9) 3
6400

979
259200

9953
518400

M il,10(9) 39916800 39916800
1

39916800
M i2,i (9) 1 1

479001600 479001600
1

479001600
^ 12,2(9) 25600

979
777600

9953
1244160

^ 12,3(9) 22841
248832

1873313
248832

2247511
_9218_

^ 12,4(9) 6515 
■ 1.0̂ ·

78674635
31104

72521259565
248832-

^ 12,5(9) 1274653
15360-

98854149649
1244160

122245516463717 
6220800

M12,6(9) 2000669
-1536.Q.·

46960534439 
213840

348724051815737 
4561920..

^ 12,7(9) 1274653
-JL5-3.60

98854149649
1244160-

122245516463717 
6220800

M i2,8(9) 6515
1024

78674635
31104

72521259565
248832

^ 12,9(9) 22841
248832

1873313
248832

2247511
9216

M i2,io(9) 25600
979

777600
9953

.1244160-
M i2,i i (9) 1

479001600 479001600 479001600
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A.3 Program for Evaluation of Pn̂k{Q)

with(combinat):
#Poincare polynomial of the moduli space of stable 
#configurations of M points in P"(k-1).
Poinc:=proc(N,k)
local A,B,ck,Ck, cM, CN,GS, SN, Sk,i,j, m,n, p,mult, pm, P, S,t; 
#global kl,beta;
#tau:=0:chi:=0:
#Use the symmetry P(N,k)=P(N,N-k) to reduce 
#the calculations 
kl:=min(k,N-k); 
n:=N-kl:
#recursion for Stirling polynomials
GS[0] [0] : = 1:
for i from 1 to n do

GSCi] [1] :=l:GS[i] [0] :=0:
od:
for i from 1 to kl do 

GSC-1] [i] :=0
od:
for i from 0 to n do

for j from 1 to kl do
GS[i] [j] :=expand(GS[i] [j-l]+GS[i-l] [j]*normal((l-q‘j)/(l-q))) 
od:

od:
#changing Stirling polynomials to F-polynomials 
for i from 1 to n do

for j from kl to 1 by -1 do
GS[i] [j] :=sum(' (-l)''(j-s)*binomial(i+j ,i+s)*GS[i] [s] ', 's'=l. .j) 
od: 

od:
pm:=-l: P:=0: 
for m from 1 to kl do 

pm:=-pm:
#Fixing vertical steps of a path under diagonal.
#For large k it would be better to count compositions
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#one by one instead of creating a table!
Ck:=composition(kl,m):

#the path closest to diagonal with given vertical 
#steps ck

for ck in Ck do
for i from 0 to m do 

# A[i] :=i;A[m] :=n;
A[i]:=ceil(sum('ck[s]','s'=l..i)*n/kl);
B[i] :=n-A[i] ;

od;
#we have to count the closest path separately

S :=sum('B[i]*ck[i]', 'i'=1..m-1); 
t:=l:
for i from 1 to m-1 do

if n-B[i]=sum('ck[s]','s'=l..i)*n/kl then t:=t+l fi: 
od:

mult: =pm*factorial(N)*(l/t)/product(factorial(B[s-l]-B[s]+ck[s]),s=l..m); 
P:=P+expand(product (GS[B[s-l]-B[s]] [ck[s]] , 

s=l..m)*q"S)*mult;
#S1:=S+sum('ck[i]*(ck[i]-l)/2','i'=l..m);
#tau: =tau+(-l) ''Sl*pm*mult;
#chi:=chi+l;
#the next path in lexicographic order 

while B[l]>m-1 do
for i from m-1 by -1 to 1 do 

if B[i]>m-i then
for j from m-1 by -1 to i do

B[j] :=min(B[i]-l+i-j ,n-A[j])
od;
break

fi;
od;
S:=sum('B[i]*ck[i]', 'i'=l..m-1); 
t:=l;

for i from 1 to m-1 do
if n-B[i]=sum('ck[s]','s'=1..i)*n/kl then t:=t+l:fi: 

od:
mult: =pm*factorial(N)*(l/t)/product(factorial(B[s-l]-B[s]+ck[s]),s=l..m);
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P :=P+expand(product(GS[B[s-1]-B[s]] [ck[s]], 
s=l..m)*q“S)*mult; 

od:
od:

od:
P : = so r t (n o r m a l (P / (q - l ) “ ( k l - 1 ) ) ) ;

RETURN(P); 
end;
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