On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices
dc.citation.epage | 13 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.volumeNumber | 493 | en_US |
dc.contributor.author | Altinişik, E. | en_US |
dc.contributor.author | Keskin, A. | en_US |
dc.contributor.author | Yildiz, M. | en_US |
dc.contributor.author | Demirbüken, M. | en_US |
dc.date.accessioned | 2016-02-08T10:39:56Z | |
dc.date.available | 2016-02-08T10:39:56Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Computer Technology and Information Systems | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | Let Kn be the set of all n×n lower triangular (0,1)-matrices with each diagonal element equal to 1, Ln={YYT:Y ∈ Kn} and let cn be the minimum of the smallest eigenvalue of YYT as Y goes through Kn. The Ilmonen-Haukkanen-Merikoski conjecture (the IHM conjecture) states that cn is equal to the smallest eigenvalue of Y0Y0 T, where Y0 ∈ Kn with (Y0)ij = (Formula presented.) for i > j. In this paper, we present a proof of this conjecture. In our proof we use an inequality for spectral radii of nonnegative matrices. © 2015 Elsevier Inc. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:39:56Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1016/j.laa.2015.11.023 | en_US |
dc.identifier.issn | 243795 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/25146 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Inc. | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.laa.2015.11.023 | en_US |
dc.source.title | Linear Algebra and Its Applications | en_US |
dc.subject | (0, 1)-matrix | en_US |
dc.subject | Eigenvalue | en_US |
dc.subject | Fibonacci number | en_US |
dc.subject | GCD matrix | en_US |
dc.subject | Positive matrix | en_US |
dc.subject | Spectral radius | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Number theory | en_US |
dc.subject | Eigen-value | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | GCD matrices | en_US |
dc.subject | Positive matrices | en_US |
dc.subject | Spectral radii | en_US |
dc.subject | Matrix algebra | en_US |
dc.title | On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices.pdf
- Size:
- 331.3 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version