Scholarly Publications - Information Systems and Technologies

Permanent URI for this collectionhttps://hdl.handle.net/11693/115493

Browse

Recent Submissions

Now showing 1 - 20 of 90
  • ItemOpen Access
    Coming to terms with the digital natives: understanding the marketing sensitivities of Genzers as hospitality consumers
    (2024-05-04) Yılmaz, Semih; Collins, Ayşe; Ali, Seyid Amjad; Berezina, K; Nixon, L; Tuomi, A
    As "digital natives", GenZ is set apart from previous generations in terms of its online connectedness. Even though this generation is expected to be the prevailing customer base around the world by 2026, there is a noticeable lack of studies on GenZ's consumer characteristics within the hospitality context. This study investigates the marketing-related factors affecting GenZ's accommodation decisions as well as their consumer sensitivities to contemporary constructs such as brand uniqueness, social media presentability, sustainability consciousness, and cancel culture.
  • ItemOpen Access
    Capital flows volatility and systemic risk in emerging markets: a case of Türkiye
    (World Scientific Publishing Co. Pte. Ltd., 2024-04) Ali, Seyid Amjad; Mahmud, Seyid Fahri; Yülek, Murat Ali; Akosman, Fatih Furkan
    US sub-prime crisis in 2008–09 led the central banks undertake unconventional monetary policies. In turn, short-term and volatile capital flows into emerging markets surged significantly, reigniting an intense academic debate on the ability of the central banks in EMs to protect their financial markets from external shocks. This paper develops a partially integrated System Dynamics Model to simulate the impact of the capital flows on the dynamics of the nominal exchange rate in Türkiye. The results support the contention that several recent episodes of excessive depreciation of the Turkish Lira as well as the currency crisis of 2018 can be linked to the reversals of stocks of short-term FX liabilities. The model also integrates policy rate sub-module into the main model, allowing responses of the central bank to inflation and exchange rate as a feedback mechanism. The results of the module indicate that external factors may cause the central bank to loose monetary independence in order to maintain financial stability.
  • ItemOpen Access
    Synergizing LED technology and hydropriming for intelligent modeling and mathematical expressions to optimize chickpea germination and growth indices
    (Springer New York LLC, 2024-03-29) Aasim, Muhammad; Akın, Fatma; Ali, Seyid Amjad
    The influence of hydropriming and Light Emitting Diodes (LED) on germination and growth indices, followed by optimizing and validation via artificial intelligence-based models was carried out in this research. White LEDs (W-LEDs) were more effective by yielding the most effective growth indices, such as mean germination time (MGT) (1.11 day), coefficient of variation of germination time (CV t ) (20.72%), mean germination rate (MR) (0.81 day-1), uncertainty (U) (0.40 bit), and synchronization (Z values) (0.79); the optimum MGT (1.09 day), CV t (15.97%), MR (0.77 day-1), U (0.32 bit), and Z (0.55) values were found after 2 h of hydropriming, which was responsible for all efficient growth indicators. W-LEDs with 1 h hydropriming proved to be the ideal LED and hydropriming combination. Results on growth indices for in vitro seedlings were completely different from those on germination indices, and the most desirable germination indices were linked to red LEDs (R-LEDs). Whereas 4 h hydropriming was most effective for the post-germination process. Pareto charts, normal plots, contour plots, and surface plots were created to optimize the input variables. Finally, the data were predicted using Arificial Neural Network (ANN) inspired multilayer perceptron (MLP) and machine learning-based random forest (RF) algorithms. For both models, plant height was correlated with maximum R 2 values. Whereas, all output variables had relatively low mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE) scores, indicating that both models performed well. The results of this investigation disclosed a link between certain LEDs and hydropriming treatment for in vitro germination indices and plant growth.
  • ItemOpen Access
    Phosphate-solubilizing fungus (PSF) - mediated phosphorous solubilization and validation through Artificial intelligence computation
    (Springer Dordrecht, 2024-11-02) Ölmez, Fatih; Mustafa, Zemran; Türkölmez, Şahimerdan; Bildirici, Aslıhan Esra; Ali, Seyid Amjad; Aasim, Muhammad
    Phosphate-solubilizing fungus (PSF) strain alaromyces funiculosus was investigated for phosphorus solubilization, utilizing a range of pH levels and phosphate sources, followed by data confirmation through artificial intelligence modeling. T. funiculosus strain was exposed to five different phosphate sources $[Ca_3(PO_4)_2$, $FePO^{4}$, $CaHPO^{4}$, $AlPO^{4}$, and phytin] at different pH levels (4.5, 5.5, 6.5, 7.0, and 7.5). ANOVA, Pareto charts, and normal plots were used for analyzing the data. Artificial intelligence-based multilayer perceptron (MLP), random forest (RF) and extreme gradient boosting (XGBoost) models were used for data validation and prediction. Five-fold more phosphate (P) solubility by T. funiculosus was registered as compared to the control. The maximum soluble P was found at pH 4.5 (318324 ppb) and $CaHPO^{4}$ (444045 ppb). Combination of phytin × 4.5 pH yielded the highest dissolved phosphorus (1537988 ppb), followed by 127458 ppb from the control × 4.5 pH. Pareto chart and normal plot analysis showedthe negative impact of pH (B), pH × F/C (fungus/control) × P-Source (ABC), and F/C (A) factor. Whereas pH × P-Source (AC) and P-Source (C) has positive impact on P solubility. The maximum $R^{2}$ scores showed the order of RF (0.944) > MLP (0.938) > XGBoost (0.899). T. funiculosus strain has a grain potential for sustainable use for different types of phosphate sources. Application AI/ML models based on different performance metrics predicted the validated the attained results. In future research, it is recommended to check the efficacy of developed strategy under field conditions and to check the impact on soil and plant.
  • ItemOpen Access
    Evaluating higher education performance via machine learning during disruptive times: a case of applied education in Türkiye
    (Wiley, 2024-12) Yılmaz, Semih Sait; Collins, Ayşe; Ali, Seyid Amjad
    In response to the COVID-19 pandemic, an abrupt wave of digitisation and online migration swept the higher education institutions around the globe. In the aftermath of this digital transformation which endures as the legacy of the pandemic, what lacks in knowledge is how effective the anti-COVID measures were in maintaining quality education. Using machine learning to analyse student grades as a proxy for educational standards, this study investigates and demonstrates the evaluative potential of machine learning (vs. traditional statistics) with respect to not only crisis responses in education but also applied studies such as Information Systems and Tourism. Main implication of this study is the analytical utility of machine learning even when educational data are irregular and small. However, incorporating accurate and meaningful data points into the existing online educational systems is crucial to leverage this utility of machine learning.
  • ItemOpen Access
    A unified framework of response surface methodology and coalescing of Firefly with random forest algorithm for enhancing nano-phytoremediation efficiency of chromium via in vitro regenerated aquatic macrophyte coontail (Ceratophyllum demersum L.)
    (Springer, 2024-06-11) Ali, Seyid Amjad; Gümüş, Numan Emre; Aasim, Muhammad
    Nano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiO2NPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R2 scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.
  • ItemOpen Access
    Factors affecting architectural decision-making process and challenges in software projects: an industrial survey
    (John Wiley & Sons Ltd., 2025-01) Demir, Merve Ö.; Chouseinoglou, Oumout; Tarhan, Ayca K.
    Software architecture plays a fundamental role in overcoming the challenges of the development process of large-scale and complex software systems. The software architecture of a system is the result of an extensive process in which several stakeholders negotiate issues and solutions, and as a result of this negotiation, a series of architectural decisions are made. This survey study aims to determine the experiences of the software industry experts with respect to architectural decision-making, the factors that are effective in decision-making, and the technical and social problems they encounter. An online questionnaire-based survey was conducted with 101 practitioners. The responses were analyzed qualitatively and quantitatively. Analysis of responses revealed that the majority of the participants prefer to document some or all of the architectural decisions taken and to store these documents in web-based collaboration software. Decisions are usually made by teams of two or three, and discussion-based approaches (brainstorming and consensus) are adopted. In the software architecture decision-making process, “major business impact” is the most challenging situation. Information sharing and keeping track of decisions and decision rationale are areas in need of improvement as identified by most participants. From the participants' feedback and their answers to open-ended questions, we concluded that the software architecture decision-making process has an important role in the industry. Our key findings are that decisions made in the architectural decision-making process are taken by teams and generally all decisions are documented. In projects where decisions are made by a single person, peer pressure is found to be significantly different from pressure in projects where decisions are made by the group. This is an indication that as the number of people in the decision-making process increases, the disagreements also increase.
  • ItemOpen Access
    A comparative and practical approach using quantum machine learning (QML) and support vector classifier (SVC) for Light emitting diodes mediated in vitro micropropagation of black mulberry (Morus nigra L.)
    (Elsevier BV, 2024-03-28) Aasim, Muhammad; Katırcı, Ramazan; Acar, Alpaslan Şevket; Ali, Seyid Amjad
    In this study, in vitro regeneration protocol for black mulberry (Morus nigra L.) was optimized using 18 distinct combinations of benzylaminopurine (BAP) with either naphthalene acetic acid (NAA) or Indole butyric acid (IBA). The top two combinations were then utilized to optimize the light intensity given by light-emitting diodes (LEDs). Supplementation of 0.5 mg L-1 BAP and 0.25 mg L-1 IBA with 60 PPFD light intensity yielded a maximum regeneration coefficient (2.53), shoot length (6.01 cm), and number of leaves (10.73). The regenerated plantlets were rooted with IBA under in vitro conditions followed by successful acclimatization of plantlets under greenhouse conditions. The results were further investigated by linking them with an emphasis on improving the Support Vector Classifier (SVC) using quantum computing techniques, and this work embarked on a groundbreaking path to integrate the realms of machine learning (ML) with quantum computing. For this purpose, the traditional Support Vector Classifier (SVC) model was compared with quantum-enhanced algorithms, including SVC with the quantum kernel (SVC Qkernel), SVC with quantum features (SVC Qfeatures), Quantum Support Vector Classifier (QSVC), and the Variational Quantum Circuit (VQC). The quantum-enhanced models showed a range of results, indicating their complex and subtle character, whereas classical SVC performed robustly for multiple metrics. Quantum kernel-based SVC demonstrated an interesting trade-off between recall and precision, indicating its proficiency in processing particular data properties.
  • ItemEmbargo
    Zeugodacus fruit flies (Diptera: Tephritidae) host preference analysis by machine learning-based approaches
    (Elsevier BV, 2024-07) Nazir, N.; Fatima, S.; Aasim, M.; Yaqoob, F.; Mahmood, K.; Ali, Seyid Amjad; Awan, S.I.; ul Haq, I.
    Detecting the host preference of highly polyphagous and economically significant pest species of fruit flies (Diptera; Tephritidae) is important for identifying their species status, their management in orchards and the international trade of fruits and vegetables. In the current study, three fruit fly species Zeugodacus tau, Z. signata, and Z. cucrbitae, (Diptera: Tephritidae) were evaluated for their oviposition preference among three host fruits: pumpkin, cucumber, and bitter gourd. The investigation was conducted under choice conditions in the laboratory. Fruit fly species and host fruits were used as input/predictive variables whereas, oviposition preference, number of pupae, weight of pupae, adult emergence, and sex ratio were used as output/response variables to test the host preference through an Artificial Neural Network ANN/machine learning (ML) algorithms. ANN-based on a Multi-Layer Perceptron (MLP) model and decision tree-based Random Forest (RF) models were employed. Results revealed that Z. tau preferred pumpkin > cucumber > bitter gourd in order, Z. cucurbitae preferred bitter gourd > pumpkin > cucumber in order and Z. signata also preferred pumpkin but followed by bitter gourd and cucumber for oviposition. The specific host preferences observed in both Z. tau and Z. signata suggest that they may not be distinct species but rather closely related siblings. These findings highlight host preference as a marker for species delimitation. Moreover, the machine learning (ML) tools, provide better prediction in identifying host preference than statistical methods. These results are discussed in the context of the importance of studying host preferences for fruit flies’ species delimitation, their management, and international trade of fruits and vegetables.
  • ItemOpen Access
    Development of a web-based decision support nurse care management system: decision support-n-care
    (Lippincott Williams & Wilkins, 2024-12) Özduyan Kılıç, M.; Korkmaz, F.; Sevgi, Cüneyt; Chouseinoglou, Oumout; Alexander, Susan
  • ItemOpen Access
    Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H2O2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.)
    (Springer Dordrecht, 2024-03-25) Aasim, Muhammad; Yildirim, Busra; Say, Ahmet; Ali, Seyid Amjad; Aytac, Selim; Nadeem, Muhammad Azhar
    Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 x Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 x 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.
  • ItemOpen Access
    Response surface methodology and artifcial intelligence modeling for in vitro regeneration of Brazilian micro sword (lilaeopsis brasiliensis)
    (Springer Dordrecht, 2024-04-02) Ali, Seyid Amjad; Aasim, Muhammad
    In this study, response surface methodology (RSM) was used to optimize in vitro regeneration of the Brazilian micro sword (Lilaeopsis brasiliensis) aquatic plant, followed by data prediction and validation using machine learning algorithms. The basal salt, sucrose and Benzyaminopurine (BAP) concentrations were derived from Box-Behnken design of RSM. The response surface regression analysis revealed that 1.0 g/L MS + 0.1 mg/L BAP + 25 g/L sucrose was optimized for maximum regeneration (100%), shoot counts (63.2), and fresh weight (1.382 g). The RSM-based predicted scores were fairly similar to the actual scores, which were 100% regeneration, 63.39 shoot counts, and 1.44 g fresh weight. Pareto charts analysis illustrated the significance of MS for regeneration and fresh weight but remained insignificant. Conversely, MS × BAP was found to be the most crucial factor for the shoot counts, with MS coming in second and having a major influence. The analysis of the normal plot ascertained the negative impact of elevated MS concentration on shoot counts and enhanced shoot counts from the combination of MS × BAP. Results were further optimized by constructing contour and surface plots. The response optimizer tool demonstrated that maximum shoot counts of 63.26 and 1.454 g fresh weight can be taken from the combination of 1.0 g/L MS + 0.114 mg/L BAP + 23.94 g/L. Using three distinct performance criterias, the results of machine learning models showed that the multilayer perceptron (MLP) model performed better than the random forest (RF) model. Our findings suggest that the results may be utilized to optimize various input variables using RSM and verified via ML models.
  • ItemEmbargo
    Computing artificial neural network and genetic algorithm for the feature optimization of basal salts and cytokinin-auxin for in vitro organogenesis of royal purple (cotinus coggygria scop)
    (Elsevier BV, 2023-09-01) Aasim, Muhammad; Ayhan, Ayşe; Katırcı, Ramazan; Acar, Alpaslan Şevket; Ali, Seyid Amjad
    This study presents the in vitro regneration protocol for Royal purple [(Cotinus coggygria Scop. (syn.: Rhus cotinus L.)] from nodal segment explants followed by optimizing the input variable combinations with the aid of PyTorch ANN and Genetic Algorithm (GA). The Murashige and Skoog (MS) culture medium yielded relatively higher regeneration frequency (91.52 %) and shoot count (1.96) as compared to woody plant medium (WPM), which yielded 84.58 % regeneration and shoot count (1.61) per explant. The supplementation of plant growth regulators (PGRs) + MS medium yielded 80.0–100.0 % shoot regeneration and 1.48–3.25 shoot counts compared to 60.0–100.0 % shoot regeneration and 1.00–2.37 shoots from the combination of PGRs + WPM. In order to predict the shoot count and regeneration with the aid of a mathematical model, the machine learning algorithms of Multilayer Perceptron (MLP), Support Vector Regression (SVR), Extreme Gradient Boosting (XGB), and Random Forest (RF) models were utilized. The highest R2 values for both output variables were acquired using MLP model in PyTorch platform. The R2 scores for regeneration and shoot counting were recorded as 0.69 and 0.71 respectively. NSGA-II algorithm revealed the 1.25 mg/L BAP (6-Benzylaminopurine), 0.02 mg/L NAA (Naphthalene acetic acid), and 0.03 mg/L IBA (Indole butyric acid) in WPM medium as an optimum combination for 100 % regeneration. On the other hand, the algorithm suggested multiple combination in MS medium for maximum shoot counting.
  • ItemOpen Access
    Instructor-Related factors affecting game utilization in software engineering education: a replication study
    (IGI Global, 2023-08-10) Albayrak, Ö.; Albayrak, Duygu
    Software engineering education is challenging. To cope with various challenges of software engineering education, instructors at universities utilize different ways. One of these ways is to use games in education. In this study, a replication of a previous survey was conducted to check factors that impact on intructors' decision-making on selection of games in undergraduate software engineering education. Out of 287 invitations, a total of 42 valid responses were obtained. Based on the results, the authors observed that “the number of hours per week the instructor plays games,” “the instructor's experience in using games for educational purposes in general,” and “the instructor's experience in designing games for educational purposes” have significant impact on the instructor's decision-making on using games in software engineering education. The authors present the results and limitations of the study as well as plans for future research.
  • ItemOpen Access
    Artifcial intelligence–based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L.
    (2023-01-06) Aasim, M.; Ali, Seyid Amjad; Aydin, S.; Bakhsh, A.; Sogukpinar, C.; Karatas, M.; Khawar, K.M.; Aydin, M.E.
    Water bodies or aquatic ecosystem are susceptible to heavy metal accumulation and can adversely afect the environment and human health especially in underdeveloped nations. Phytoremediation techniques of water bodies using aquatic plants or macrophytes are well established and are recognized as eco-friendly world over. Phytoremediation of heavy metals and other pollutants in aquatic environments can be achieved by using Ceratophyllum demersum L. — a well-known foating macrophyte. In vitro regenerated plants of C. demersum (7.5 g/L) were exposed to 24, 72, and 120 h to 0, 0.5, 1.0, 2.0, and 4.0 mg/L of cadmium (CdSO4·8H2O) in water. Results revealed signifcantly diferent relationship in terms of Cd in water, Cd uptake by plants, bioconcentration factor (BCF), and Cd removal (%) from water. The study showed that Cd uptake by plants and BCF values increased signifcantly with exposure time. The highest BCF value (3776.50) was recorded for plant samples exposed to 2 mg/L Cd for 72 h. Application of all Cd concentrations and various exposure duration yielded Cd removal (%) between the ranges of 93.8 and 98.7%. These results were predicted through artifcial intelligence–based models, namely, random forest (RF), extreme gradient boosting (XGBoost), and multilayer perceptron (MLP). The tested models predicted the results accurately, and the attained results were further validated via three diferent performance metrics. The optimal regression coefcient (R2) for the models was recorded as 0.7970 (Cd water, mg/L), 0.9661 (Cd plants, mg/kg), 0.9797 bioconcentration factor (BCF), and 0.9996 (Cd removal, %), respectively. These achieved results suggest that in vitro regenerated C. demersum can be efcaciously used for phytoremediation of Cd-contaminated aquatic environments. Likewise, the proposed modeling of phytoremediation studies can further be employed more comprehensively in future studies aimed at data prediction and optimization.
  • ItemOpen Access
    Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans
    (Springer, 2023-08-02) Özcan, Esra; Atar, Hasan Hüseyin; Ali, Seyid Amjad; Aasim, Muhammad
    The application of plant tissue culture protocols for aquatic plants has been widely adopted in recent years to produce cost-effective plants for aquarium industry. In vitro regeneration protocol for the two different hydrophytes Hemianthus callitrichoides (Cuba) and Riccia fluitans were optimized for appropriate basal medium, sucrose, agar, and plant growth regulator concentration. The MS No:3B and SH + MSVit basal medium yielded a maximum clump diameter of 5.53 cm for H. callitrichoides and 3.65 cm for R. fluitans. The application of 20 g/L sucrose was found appropriate for yielding larger clumps in both species. Solidification of the medium with 1 g/L agar was optimized for inducing larger clumps with rooting for both species. Provision of basal medium with any concentration of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) was found detrimental for inducing larger clumps for both species. The largest clumps of H. callitrichoides (5.51 cm) and R. fluitans (4.59 cm) were obtained on basal medium without any plant growth regulators. The attained data was also predicted and validated by employing multilayer perceptron (MLP), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The performance of the models was tested with three different performance metrics, namely, coefficient of regression (R2), means square error (MSE), and mean absolute error (MAE). Results revealed that MLP and RF models performed better than the XGBoost model. The protocols developed in this study have shown promising outcomes and the findings can irrefutably assist to produce H. callitrichoides and R. fluitans on a large scale for the local aquarium industry.
  • ItemOpen Access
    Factors affecting the adoption of cloud for software development: A case from Turkey
    (World Scientific Publishing Co. Pte. Ltd., 2023-07-04) Pisirir, E.; Chouseinoglou, Oumout; Sevgi, Cüneyt; Uçar, Erkan
    Cloud-based solutions for software development activities have been emerging in the last decade. This study aims to develop a hybrid technology adoption model for cloud use in software development activities. It is based on Technology Acceptance Model (TAM), Technology–Organization–Environment (TOE) framework, and the proposed extension Personal–Organization–Project (POP) structure. The methodology selected is a questionnaire-based survey and data are collected through personally administered questionnaire sessions with developers and managers, resulting in 268 responses regarding 84 software development projects from 30 organizations in Turkey, selected by considering company and project sizes and geographical proximity to allow face-to-face response collection. Structural Equation Modeling (SEM) is used for statistical evaluation and hypothesis testing. The final model was reached upon modifications and it was found to explain the intention to adopt and use the cloud for software development meaningfully. To the best of our knowledge, this is the first study to identify and understand factors that affect the intention of developing software on the cloud. The developed hybrid model was validated to be used in further technology adoption studies. Upon modifying the conceptual model and discovering new relations, a novel model is proposed to draw the relationships between the identified factors and the actual use, intention to use and perceived suitability. Practical and social implications are drawn from the results to help organizations and individuals make decisions on cloud adoption for software development.
  • ItemOpen Access
    Capitalizing the predictive potential of machine learning to detect various fire types using NASA's MODIS satellite data for the mediterranean basin
    (Association for Computing Machinery, 2024-01-22) Lassem, Nima Kamali; Gaafar, Obai Mohamed Hisham Abdelmohsen ; Ali, Seyid Amjad
    This study investigates the realm of machine learning for the classification of different fire types using NASA's FIRMS MODIS satellite data for the Mediterranean basin. Concentrating on the Mediterranean basin and utilizing data spanning from 2019 to 2021 for model training, XGBoost and Random Forest models were subsequently validated for the 2022 data. The findings distinctly illustrate XGBoost's superior predictive precision as compared to Random Forest by showcasing an impressive overall F1 score surpassing 95% and 84% macro F1 score across various fire types. This study emphasizes the prospect of machine learning to improve worldwide wildfire monitoring and response by providing exact, real-time fire type forecasts.
  • ItemOpen Access
    Artificial neural network and decision tree facilitated prediction and validation of cytokinin‑auxin induced in vitro organogenesis of sorghum (Sorghum bicolor L.)
    (Springer Dordrecht, 2023-04-05) Aasim, M.; Ali, Seyid Amjad; Altaf, M. T.; Ali, A.; Nadeem, M. A.; Baloch, F. S.
    In this study, in vitro regeneration protocol of sorghum (Sorghum bicolor) was successfully established by using direct organogenesis from a mature zygotic embryo explant. The used basal medium encompassed Murashige and Skoog medium (MS) supplemented with 2–4 mg/L Benzylaminopurine (BAP) alone or with 0.25 mg/L Indole butyric acid (IBA) or Naphthalene acetic acid (NAA). Results demonstrated a significant impact of cytokinin-auxin on shoot count (1.24–3.46) and shoot length (2.80–3.47 cm). Maximum shoot count (3.46) and shoot length (3.97 cm) were achieved on the MS medium enriched with 2 mg/L BAP + 0.25 mg/L NAA and 2.0 mg/L BAP, respectively. To ascertain the impact of BAP alone, BAP + IBA, and BAP + NAA, the data were also analyzed by using a factorial regression model. Pareto chart and normal plots were used to check either the positive or negative impact of input variables on output variables. To further explore the association between BAP + IBA and BAP + NAA on shoot count and shoot length, contour and surface plots were also built. Three different artificial intelligence-based models along with four different performance metrics were utilized to validate the predicted results. Multilayer perceptron (MLP) model performed more efficiently (R2 = 0.799 for shoot count and R2 = 0.831 for shoot length) as compared to the decision tree-based algorithms of random forest (RF) – (R2 = 0.779 for shoot count and R2 = 0.786 for shoot length) and extreme gradient boost (XGBoost) – (R2 = 0.768 for shoot count and R2 = 0.781 for shoot length). As plant tissue culture protocol is a powerful tool for genetic engineering and genome editing of crops, integration of different artificial intelligence-based models can lead to improvement of sorghum with the aid of biotechnological tools.
  • ItemOpen Access
    Artificial neural network modeling for deciphering the in vitro induced salt stress tolerance in chickpea (Cicer arietinum L)
    (Springer (India) Private Ltd., 2023-01-30) Aasim, M.; Akin, F.; Ali, Seyid Amjad; Taskin, M.B.; Colak, M.S.
    Salt stress is one of the most critical abiotic stresses having significant contribution in global agriculture production. Chickpea is sensitive to salt stress at various growth stages and a better knowledge of salt tolerance in chickpea would enable breeding of salt tolerant varieties. During present investigation, in vitro screening of desi chickpea by continuous exposure of seeds to NaCl-containing medium was performed. NaCl was applied in the MS medium at the rate of 6.25, 12.50, 25, 50, 75, 100, and 125 mM. Different germination indices and growth indices of roots and shoots were recorded. Mean germination (%) of roots and shoots ranged from 52.08 to 100%, and 41.67–100%, respectively. The mean germination time (MGT) of roots and shoots ranged from 2.40 to 4.78 d and 3.23–7.05 d. The coefficient of variation of the germination time (CVt) was recorded as 20.91–53.43% for roots, and 14.53–44.17% for shoots. The mean germination rate (MR) of roots was better than shoots. The uncertainty (U) values were tabulated as 0.43–1.59 (roots) and 0.92–2.33 (shoots). The synchronization index (Z) reflected the negative impact of elevated salinity levels on both root and shoot emergence. Application of NaCl exerted a negative impact on all growth indices compared to control and decreased gradually with elevated NaCl concentration. Results on salt tolerance index (STI) also revealed the reduced STI with elevated NaCl concentration and STI of roots was less than shoot. Elemental analysis revealed more Na and Cl accumulation with respective elevated NaCl concentrations. The In vitro growth parameters and STI values validated and predicted by multilayer perceptron (MLP) model revealed the relatively high R2 values of all growth indices and STI. Findings of this study will be helpful to broaden the understanding about the salinity tolerance level of desi chickpea seeds under in vitro conditions using various germination indices and seedling growth indices.