Mutual energy transfer in a binary colloidal quantum well complex

buir.contributor.authorSharma, Manoj
buir.contributor.authorDelikanlı, Savaş
buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage5199en_US
dc.citation.issueNumber17en_US
dc.citation.spage5193en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorYu, J.en_US
dc.contributor.authorSharma, Manojen_US
dc.contributor.authorDelikanlı, Savaşen_US
dc.contributor.authorBirowosuto, M. D.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorDang, C.en_US
dc.date.accessioned2020-02-17T06:46:19Z
dc.date.available2020-02-17T06:46:19Z
dc.date.issued2019
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractFörster resonance energy transfer (FRET) is a fundamental process that is key to optical biosensing, photosynthetic light harvesting, and down-converted light emission. However, in total, conventional FRET in a donor–acceptor pair is essentially unidirectional, which impedes practical application of FRET-based technologies. Here, we propose a mutual FRET scheme that is uniquely bidirectional in a binary colloidal quantum well (CQW) complex enabled by utilizing the d orbital electrons in a dopant–host CQW system. Steady-state emission intensity, time-resolved, and photoluminescence excitation spectroscopies have demonstrated that two distinct CQWs play the role of donor and acceptor simultaneously in this complex consisting of 3 monolayer (ML) copper-doped CQWs and 4 ML undoped CQWs. Band-edge excitons in 3 ML CQWs effectively transfer the excitation to excitons in 4 ML CQWs, whose energy is also harvested backward by the dopants in 3 ML CQWs. This binary CQW complex, which offers a unique mutual energy-transfer mechanism, may unlock revolutionary FRET-based technologies.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-17T06:46:19Z No. of bitstreams: 1 Mutual_energy_transfer_in_a_binary_colloidal_quantum_well_complex.pdf: 3194612 bytes, checksum: 1a712d060f3a7fb5a712d94818b43240 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-17T06:46:19Z (GMT). No. of bitstreams: 1 Mutual_energy_transfer_in_a_binary_colloidal_quantum_well_complex.pdf: 3194612 bytes, checksum: 1a712d060f3a7fb5a712d94818b43240 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1021/acs.jpclett.9b01939en_US
dc.identifier.issn1948-7185
dc.identifier.urihttp://hdl.handle.net/11693/53379
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acs.jpclett.9b01939en_US
dc.source.titleJournal of Physical Chemistry Lettersen_US
dc.subjectImpuritiesen_US
dc.subjectExcitonsen_US
dc.subjectAbsorptionen_US
dc.subjectElectrical energyen_US
dc.subjectFluorescence resonance energy transferen_US
dc.titleMutual energy transfer in a binary colloidal quantum well complexen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mutual_energy_transfer_in_a_binary_colloidal_quantum_well_complex.pdf
Size:
3.05 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: