Tailoring vibrational signature and functionality of 2d-ordered linear-chain carbon-based nanocarriers for predictive performance enhancement of high-end energetic materials

Date

2022-04-01

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Nanomaterials

Print ISSN

20794991

Electronic ISSN

Publisher

MDPI

Volume

12

Issue

7

Pages

1 - 25

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

A recently proposed, game-changing transformative energetics concept based on predictive synthesis and preprocessing at the nanoscale is considered as a pathway towards the development of the next generation of high-end nanoenergetic materials for future multimode solid propulsion systems and deep-space-capable small satellites. As a new door for the further performance enhancement of transformative energetic materials, we propose the predictive ion-assisted pulse-plasma-driven assembling of the various carbon-based allotropes, used as catalytic nanoadditives, by the 2D-ordered linear-chained carbon-based multicavity nanomatrices serving as functionalizing nanocarriers of multiple heteroatom clusters. The vacant functional nanocavities of the nanomatrices available for heteroatom doping, including various catalytic nanoagents, promote heat transfer enhancement within the reaction zones. We propose the innovative concept of fine-tuning the vibrational sig-natures, functionalities and nanoarchitectures of the mentioned nanocarriers by using the surface acoustic waves-assisted micro/nanomanipulation by the pulse-plasma growth zone combined with the data-driven carbon nanomaterials genome approach, which is a deep materials informatics-based toolkit belonging to the fourth scientific paradigm. For the predictive manipulation by the micro-and mesoscale, and the spatial distribution of the induction and energy release domains in the reaction zones, we propose the activation of the functionalizing nanocarriers, assembled by the heteroatom clusters, through the earlier proposed plasma-acoustic coupling-based technique, as well as by the Teslaphoresis force field, thus inducing the directed self-assembly of the mentioned nanocarbon-based additives and nanocarriers. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)