Semigroup actions on sets and the burnside ring
buir.contributor.author | Erdal, Mehmet Akif | |
buir.contributor.author | Ünlü, Özgün | |
dc.citation.epage | 28 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 7 | en_US |
dc.citation.volumeNumber | 26 | en_US |
dc.contributor.author | Erdal, Mehmet Akif | en_US |
dc.contributor.author | Ünlü, Özgün | en_US |
dc.date.accessioned | 2019-01-25T05:42:11Z | |
dc.date.available | 2019-01-25T05:42:11Z | |
dc.date.issued | 2018 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In this paper we discuss some enlargements of the category of sets with semigroup actions and equivariant functions. We show that these enlarged categories possess two idempotent endofunctors. In the case of groups these enlarged categories are equivalent to the usual category of group actions and equivariant functions, and these idempotent endofunctors reverse a given action. For a general semigroup we show that these enlarged categories admit homotopical category structures defined by using these endofunctors and show that up to homotopy these categories are equivalent to the usual category of sets with semigroup actions. We finally construct the Burnside ring of a monoid by using homotopical structure of these categories, so that when the monoid is a group this definition agrees with the usual definition, and we show that when the monoid is commutative, its Burnside ring is equivalent to the Burnside ring of its Gr¨othendieck group. | en_US |
dc.description.provenance | Submitted by Mandana Moftakhari (mandana.mir@bilkent.edu.tr) on 2019-01-25T05:42:11Z No. of bitstreams: 1 Semigroup_Actions_on_Sets_and_the_Burnside_Ring.pdf: 1106949 bytes, checksum: 14011b681b3f8cf1f912f6bda9e4aebb (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-01-25T05:42:11Z (GMT). No. of bitstreams: 1 Semigroup_Actions_on_Sets_and_the_Burnside_Ring.pdf: 1106949 bytes, checksum: 14011b681b3f8cf1f912f6bda9e4aebb (MD5) Previous issue date: 2016-12-24 | en |
dc.identifier.doi | 10.1007/s10485-016-9477-4 | en_US |
dc.identifier.eissn | 1572-9095 | |
dc.identifier.issn | 0927-2852 | |
dc.identifier.uri | http://hdl.handle.net/11693/48336 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Science | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s10485-016-9477-4 | en_US |
dc.source.title | Applied Categorical Structures | en_US |
dc.subject | Semigroup actions | en_US |
dc.subject | Monoid actions | en_US |
dc.subject | Reverse actions | en_US |
dc.subject | Homotopical category | en_US |
dc.subject | Burnside ring | en_US |
dc.subject | 16W22 | en_US |
dc.subject | 20M20 | en_US |
dc.subject | 20M35 | en_US |
dc.subject | 55U35 | en_US |
dc.title | Semigroup actions on sets and the burnside ring | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Semigroup_Actions_on_Sets_and_the_Burnside_Ring.pdf
- Size:
- 1.06 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: