Semigroup actions on sets and the burnside ring

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
14
downloads

Citation Stats

Series

Abstract

In this paper we discuss some enlargements of the category of sets with semigroup actions and equivariant functions. We show that these enlarged categories possess two idempotent endofunctors. In the case of groups these enlarged categories are equivalent to the usual category of group actions and equivariant functions, and these idempotent endofunctors reverse a given action. For a general semigroup we show that these enlarged categories admit homotopical category structures defined by using these endofunctors and show that up to homotopy these categories are equivalent to the usual category of sets with semigroup actions. We finally construct the Burnside ring of a monoid by using homotopical structure of these categories, so that when the monoid is a group this definition agrees with the usual definition, and we show that when the monoid is commutative, its Burnside ring is equivalent to the Burnside ring of its Gr¨othendieck group.

Source Title

Applied Categorical Structures

Publisher

Springer Science

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English