Ultra-broadband near-unity light absorption by disjunct scattering resonances of disordered nanounits created with atomic scale shadowing effect

buir.contributor.authorÖzbay, İmre
buir.contributor.authorGhobadi, Amir
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage90en_US
dc.citation.spage83en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorÖzbay, İmre
dc.contributor.authorGhobadi, Amir
dc.contributor.authorÖzbay, Ekmel
dc.date.accessioned2021-03-11T16:55:22Z
dc.date.available2021-03-11T16:55:22Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractMetamaterial perfect absorbers have been the subject of many studies in recent years. Near-unity light harvesting in an ultra-broadband frequency range is the prime goal in many applications such as photoconversion systems. While the most common designs for achieving this goal are periodic plasmonic architectures, this work reveals the unprecedented potential of random designs for ultra-broadband light absorption. A metal-insulator-metal (MIM) structure with a periodically patterned top layer has discrete translational symmetry. The proposed theory, supported by numerical simulations, unveils the fact that breaking this symmetry in the top layer introduces multiple resonant units with separate spectra, and the superposition of these separate resonances broaden the overall response. The random absorber is realized using the oblique angle deposition-induced atomic scale shadowing effect. Based on the experimental results and numerical calculations, the proposed disorder plasmonic design can propose unity absorption (> 90%) over the spectral range from 520 to 1270 nm.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2021-03-11T16:55:22Z No. of bitstreams: 1 Ultra_broadband_near_unity_light_absorption_by_disjunct_scattering_resonances_of_disordered_nanounits_created_with_atomic_scale_shadowing_effect.pdf: 2720716 bytes, checksum: 7dd23873289e3b4d08711b20011f08d8 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-11T16:55:22Z (GMT). No. of bitstreams: 1 Ultra_broadband_near_unity_light_absorption_by_disjunct_scattering_resonances_of_disordered_nanounits_created_with_atomic_scale_shadowing_effect.pdf: 2720716 bytes, checksum: 7dd23873289e3b4d08711b20011f08d8 (MD5) Previous issue date: 2020en
dc.identifier.doi10.1007/s11468-020-01260-1en_US
dc.identifier.issn1557-1955
dc.identifier.urihttp://hdl.handle.net/11693/75917
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s11468-020-01260-1en_US
dc.source.titlePlasmonicsen_US
dc.subjectPlasmonicsen_US
dc.subjectFabry-Perot cavityen_US
dc.subjectMetamaterial perfect absorberen_US
dc.subjectOblique angle depositionen_US
dc.titleUltra-broadband near-unity light absorption by disjunct scattering resonances of disordered nanounits created with atomic scale shadowing effecten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultra_broadband_near_unity_light_absorption_by_disjunct_scattering_resonances_of_disordered_nanounits_created_with_atomic_scale_shadowing_effect.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: