Multiexciton generation assisted highly photosensitive CdHgTe nanocrystal skins

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage331en_US
dc.citation.spage324en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorAkhavan S.en_US
dc.contributor.authorCihan, A. F.en_US
dc.contributor.authorYeltik A.en_US
dc.contributor.authorBozok, B.en_US
dc.contributor.authorLesnyak, V.en_US
dc.contributor.authorGaponik N.en_US
dc.contributor.authorEychmüller A.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2018-04-12T10:53:50Z
dc.date.available2018-04-12T10:53:50Z
dc.date.issued2016en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractMultiexciton Generation (MEG) enabled by the photogeneration of more than one electron-hole pairs upon the absorption of a single photon observed in colloidal semiconductor nanocrystals (NCs) is an essential key to high efficiency when operating in large enough photon energy regimes. Here, we report a newly designed class of solution-processed highly sensitive MEG-assisted photosensors of CdHgTe NCs, in which the charge accumulation is dramatically enhanced for photon energies greater than two times the bandgap of the employed NCs. We fabricated and comparatively studied five types of devices based on different NC monolayers of selected quantum-confined bandgaps resulting in different levels of photovoltage buildup readouts. Among these photosensitive platforms, MEG is distinctly observed for CdHgTe NCs, as the number of electrons trapped inside these NCs and the number of holes accumulating into the interfacing metal electrode were increased beyond a single exciton per absorbed photon. Furthermore, we conducted time-resolved fluorescence measurements and confirmed the occurrence of MEG in the CdHgTe NC monolayer of the photosensor. These findings pave the way for engineering of multiexciton kinetics in high-efficiency NC-based photosensors and photovoltaics.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:53:50Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1016/j.nanoen.2016.04.055en_US
dc.identifier.issn2211-2855
dc.identifier.urihttp://hdl.handle.net/11693/36801
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.nanoen.2016.04.055en_US
dc.source.titleNano Energyen_US
dc.subjectLight sensingen_US
dc.subjectMultiexciton generationen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectQuantum dotsen_US
dc.subjectTime-resolved fluorescenceen_US
dc.titleMultiexciton generation assisted highly photosensitive CdHgTe nanocrystal skinsen_US
dc.typeArticleen_US

Files