Transition metal oxides on organic semiconductors

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage877en_US
dc.citation.issueNumber4en_US
dc.citation.spage871en_US
dc.citation.volumeNumber15en_US
dc.contributor.authorZhao Y.en_US
dc.contributor.authorZhang, J.en_US
dc.contributor.authorLiu, S.en_US
dc.contributor.authorGao, Y.en_US
dc.contributor.authorYang, X.en_US
dc.contributor.authorLeck K.S.en_US
dc.contributor.authorAbiyasa, A. P.en_US
dc.contributor.authorDivayana, Y.en_US
dc.contributor.authorMutlugun, E.en_US
dc.contributor.authorTan S.T.en_US
dc.contributor.authorXiong, Q.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorSun, X. W.en_US
dc.date.accessioned2015-07-28T12:03:19Z
dc.date.available2015-07-28T12:03:19Z
dc.date.issued2014-04en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractTransition metal oxides (TMOs) on organic semiconductors (OSs) structure has been widely used in inverted organic optoelectronic devices, including inverted organic light-emitting diodes (OLEDs) and inverted organic solar cells (OSCs), which can improve the stability of such devices as a result of improved protection of air sensitive cathode. However, most of these reports are focused on the anode modification effect of TMO and the nature of TMO-on-OS is not fully understood. Here we show that the OS on TMO forms a two-layer structure, where the interface mixing is minimized, while for TMO-on-OS, due to the obvious diffusion of TMO into the OS, a doping-layer structure is formed. This is evidenced by a series of optical and electrical studies. By studying the TMO diffusion depth in different OS, we found that this process is governed by the thermal property of the OS. The TMO tends to diffuse deeper into the OS with a lower evaporation temperature. It is shown that the TMO can diffuse more than 20 nm into the OS, depending on the thermal property of the OS. We also show that the TMO-on-OS structure can replace the commonly used OS with TMO doping structure, which is a big step toward in simplifying the fabrication process of the organic optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:03:19Z (GMT). No. of bitstreams: 1 HV21.pdf: 1396479 bytes, checksum: 23f68d6ace953b4011c4ae9b5ba2e628 (MD5)en
dc.identifier.doi10.1016/j.orgel.2014.01.011en_US
dc.identifier.issn1566-1199
dc.identifier.urihttp://hdl.handle.net/11693/12832
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.orgel.2014.01.011en_US
dc.source.titleOrganic Electronics: materials, physics, chemistry and applicationsen_US
dc.subjectTransition metal oxideen_US
dc.subjectOrganic semiconductoren_US
dc.subjectDiffusionen_US
dc.subjectOrganic light-emitting diodeen_US
dc.subjectP-dopingen_US
dc.titleTransition metal oxides on organic semiconductorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HV21.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format