Rotons and Bose condensation in Rydberg-dressed Bose gases

buir.contributor.authorTanatar, Bilal
buir.contributor.orcidTanatar, Bilal|0000-0002-5246-0119
dc.citation.epage013628-1en_US
dc.citation.issueNumber1en_US
dc.citation.spage013628-11en_US
dc.citation.volumeNumber101en_US
dc.contributor.authorSeydi, I.
dc.contributor.authorAbedinpour, S. H.
dc.contributor.authorZillich, R. E.
dc.contributor.authorAsgari, R.
dc.contributor.authorTanatar, Bilal
dc.date.accessioned2021-03-02T08:37:13Z
dc.date.available2021-03-02T08:37:13Z
dc.date.issued2020
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe investigate the ground-state properties and excitations of Rydberg-dressed bosons in both three and two dimensions, using the hypernetted-chain Euler-Lagrange approximation, which accounts for correlations and thus goes beyond the mean-field approximation. The short-range behavior of the pair distribution function signals the instability of the homogeneous system with respect to the formation of droplet crystals at strong couplings and large soft-core radius. This tendency to spatial density modulation coexists with off-diagonal long-range order. The contribution of the correlation energy to the ground-state energy is significant at large coupling strengths and intermediate values of the soft-core radius while for a larger soft-core radius the ground-state energy is dominated by the mean-field (Hartree) energy. We have also performed path integral Monte Carlo simulations at selected system parameters to verify the performance of our hypernetted-chain Euler-Lagrange results in three dimensions. In the homogeneous phase, the two approaches are in very good agreement. Moreover, Monte Carlo simulations predict a first-order quantum phase transition from a homogeneous superfluid phase to the quantum droplet phase with face-centered cubic symmetry for Rydberg-dressed bosons in three dimensions.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2021-03-02T08:37:13Z No. of bitstreams: 1 Rotons_and_bose_condensation_in_rydberg_dressed_bose_gases.pdf: 2824229 bytes, checksum: 6cc245c63e7da281784b3ad4db0be0ba (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-02T08:37:13Z (GMT). No. of bitstreams: 1 Rotons_and_bose_condensation_in_rydberg_dressed_bose_gases.pdf: 2824229 bytes, checksum: 6cc245c63e7da281784b3ad4db0be0ba (MD5) Previous issue date: 2020en
dc.identifier.doi10.1103/PhysRevA.101.013628en_US
dc.identifier.issn2469-9926
dc.identifier.urihttp://hdl.handle.net/11693/75692
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1103/PhysRevA.101.013628en_US
dc.source.titlePhysical Review Aen_US
dc.subjectBose gasesen_US
dc.subjectBose-Einstein condensatesen_US
dc.subjectCold and ultracold moleculesen_US
dc.subjectRydberg atoms & moleculesen_US
dc.subjectUltracold gasesen_US
dc.titleRotons and Bose condensation in Rydberg-dressed Bose gasesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rotons_and_bose_condensation_in_rydberg_dressed_bose_gases.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: