Rotons and Bose condensation in Rydberg-dressed Bose gases

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review A

Print ISSN

2469-9926

Electronic ISSN

Publisher

American Physical Society

Volume

101

Issue

1

Pages

013628-11 - 013628-1

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
9
downloads

Series

Abstract

We investigate the ground-state properties and excitations of Rydberg-dressed bosons in both three and two dimensions, using the hypernetted-chain Euler-Lagrange approximation, which accounts for correlations and thus goes beyond the mean-field approximation. The short-range behavior of the pair distribution function signals the instability of the homogeneous system with respect to the formation of droplet crystals at strong couplings and large soft-core radius. This tendency to spatial density modulation coexists with off-diagonal long-range order. The contribution of the correlation energy to the ground-state energy is significant at large coupling strengths and intermediate values of the soft-core radius while for a larger soft-core radius the ground-state energy is dominated by the mean-field (Hartree) energy. We have also performed path integral Monte Carlo simulations at selected system parameters to verify the performance of our hypernetted-chain Euler-Lagrange results in three dimensions. In the homogeneous phase, the two approaches are in very good agreement. Moreover, Monte Carlo simulations predict a first-order quantum phase transition from a homogeneous superfluid phase to the quantum droplet phase with face-centered cubic symmetry for Rydberg-dressed bosons in three dimensions.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)