Quantum transport through one-dimensional aluminum wires

buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.epage817en_US
dc.citation.issueNumber3en_US
dc.citation.spage812en_US
dc.citation.volumeNumber20en_US
dc.contributor.authorBatra, I. P.en_US
dc.contributor.authorSen, P.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.date.accessioned2016-02-08T11:56:56Zen_US
dc.date.available2016-02-08T11:56:56Zen_US
dc.date.issued2002en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractQuantum conductance in narrow channels has been well understood by using the two-dimensional electron gas, a model system which has been realized in semiconductor heterojunctions. An essential property of this electron gas is its ability to support a constriction of width comparable to the Fermi wavelength, a property not shared by even thin metal films. The advent of scanning tunneling microscope has made possible the fabrication of metallic wires of atomic widths. We investigate one-dimensional wires consisting of aluminum atoms, to be specific. Using the first-principles density functional calculations, we obtain the optimal structures and report the bonding as deduced from the charge density analysis. With the calculated electronic structure in hand, we discussed the quantum ballistic transport using channel capacity arguments motivated by the Heisenberg’s uncertainty principle. By comparing our results with the detailed pioneering calculations by Lang, we inferred an average value for channel transmitivity and touched upon material specific contact resistance. Finally, the validity of the Wiedemann–Franz law in the quantum domain is established by studying thermal conductance in nanowires.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T11:56:56Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2002en
dc.identifier.doi10.1116/1.1468659en_US
dc.identifier.issn1071-1023en_US
dc.identifier.urihttp://hdl.handle.net/11693/27575en_US
dc.language.isoEnglishen_US
dc.publisherAmerican Vacuum Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1116/1.1468659en_US
dc.source.titleJournal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomenaen_US
dc.subjectBand structureen_US
dc.subjectChannel capacityen_US
dc.subjectCrystal structureen_US
dc.subjectElectron gasen_US
dc.subjectElectronic structureen_US
dc.subjectFermi levelen_US
dc.subjectHeterojunctionsen_US
dc.subjectMetallic filmsen_US
dc.subjectNanostructured materialsen_US
dc.subjectProbability density functionen_US
dc.subjectScanning electron microscopyen_US
dc.subjectThermal conductivityen_US
dc.subjectCohesive energiesen_US
dc.subjectMetallic wiresen_US
dc.subjectQuantum transportsen_US
dc.subjectQuantum theoryen_US
dc.titleQuantum transport through one-dimensional aluminum wiresen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantum_transport_through_one_dimensional_aluminum_wires.pdf
Size:
101.9 KB
Format:
Adobe Portable Document Format
Description:
View / Download