Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001)
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A non-contact atomic force microscopy-based method has been used to map the static lateral forces exerted on an atomically sharp Pt/Ir probe tip by a graphite surface. With measurements carried out at low temperatures and in the attractive regime, where the atomic sharpness of the tip can be maintained over extended time periods, the method allows the quantification and directional analysis of lateral forces with piconewton and picometer resolution as a function of both the in-plane tip position and the vertical tip-sample distance, without limitations due to a finite contact area or to stick-slip-related sudden jumps of tip apex atoms. After reviewing the measurement principle, the data obtained in this case study are utilized to illustrate the unique insight that the method offers. In particular, the local lateral forces that are expected to determine frictional resistance in the attractive regime are found to depend linearly on the normal force for small tip-sample distances. © 2012 IOP Publishing Ltd.