Colloidal nanoplatelet/conducting polymer hybrids: excitonic and material properties

buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112Xen_US
dc.citation.epage3582en_US
dc.citation.issueNumber6en_US
dc.citation.spage3573en_US
dc.citation.volumeNumber120en_US
dc.contributor.authorGuzelturk, B.en_US
dc.contributor.authorMenk, F.en_US
dc.contributor.authorPhilipps, K.en_US
dc.contributor.authorKelestemur Y.en_US
dc.contributor.authorOlutas M.en_US
dc.contributor.authorZentel, R.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.bilkentauthorDemir, Hilmi Volkan
dc.date.accessioned2018-04-12T10:51:40Z
dc.date.available2018-04-12T10:51:40Z
dc.date.issued2016en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractHere we present the first account of conductive polymer/colloidal nanoplatelet hybrids. For this, we developed DEH-PPV-based polymers with two different anchor groups (sulfide and amine) acting as surfactants for CdSe nanoplatelets, which are atomically flat semiconductor nanocrystals. Hybridization of the polymers with the nanoplatelets in the solution phase was observed to cause strong photoluminescence quenching in both materials. Through steady-state photoluminescence and excitation spectrum measurements, photoluminescence quenching was shown to result from dominant exciton dissociation through charge transfer at the polymer/nanoplatelet interfaces that possess a staggered (i.e., type II) band alignment. Importantly, we found out that sulfide-based anchors enable a stronger emission quenching than amine-based ones, suggesting that the sulfide anchors exhibit more efficient binding to the nanoplatelet surfaces. Also, shorter surfactants were found to be more effective for exciton dissociation as compared to the longer ones. In addition, we show that nanoplatelets are homogeneously distributed in the hybrid films owing to the functional polymers. These nanocomposites can be used as building blocks for hybrid optoelectronic devices, such as solar cells.en_US
dc.identifier.doi10.1021/acs.jpcc.5b12661en_US
dc.identifier.issn1932-7447
dc.identifier.urihttp://hdl.handle.net/11693/36741
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpcc.5b12661en_US
dc.source.titleJournal of Physical Chemistry Cen_US
dc.subjectAnchorsen_US
dc.subjectCharge transferen_US
dc.subjectDissociationen_US
dc.subjectExcited statesen_US
dc.subjectExcitonsen_US
dc.subjectInterface statesen_US
dc.subjectOptoelectronic devicesen_US
dc.subjectPhotoluminescenceen_US
dc.subjectQuenchingen_US
dc.subjectSurface active agentsen_US
dc.subjectBuilding blockesen_US
dc.subjectConductive polymeren_US
dc.subjectEmission quenchingen_US
dc.subjectExcitation spectrumen_US
dc.subjectExciton dissociationen_US
dc.subjectHybrid optoelectronic devicesen_US
dc.subjectPhotoluminescence quenchingen_US
dc.subjectSemiconductor nanocrystalsen_US
dc.subjectSulfur compoundsen_US
dc.titleColloidal nanoplatelet/conducting polymer hybrids: excitonic and material propertiesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Colloidal NanoplateletConducting Polymer Hybrids Excitonic and Material Properties.pdf
Size:
4.75 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version