Asymptotic theory of characters of the symmetric groups
buir.advisor | Klyachko, Alexander | |
dc.contributor.author | Kurtaran, Elif | |
dc.date.accessioned | 2016-01-08T20:13:49Z | |
dc.date.available | 2016-01-08T20:13:49Z | |
dc.date.issued | 1996 | |
dc.description | Ankara : Department of Mathematics and Institute of Engineering and Science, Bilkent University, 1996. | en_US |
dc.description | Thesis (Master's) -- Bilkent University, 1996. | en_US |
dc.description | Includes bibliographical references leaves 70-71. | en_US |
dc.description.abstract | In this work, we studied the connection between ramified coverings of Riemann surfaces tt : X V oi degree n and characters of symmetric group Sn- We considered asymptotics of characters of as n —> oo and normalized characters of Sn under some restrictions. | en_US |
dc.description.provenance | Made available in DSpace on 2016-01-08T20:13:49Z (GMT). No. of bitstreams: 1 1.pdf: 78510 bytes, checksum: d85492f20c2362aa2bcf4aad49380397 (MD5) | en |
dc.description.statementofresponsibility | Kurtaran, Elif | en_US |
dc.format.extent | vii, 71 leaves | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/17830 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Coverings | en_US |
dc.subject | Riemann surfaces | en_US |
dc.subject | triangulations | en_US |
dc.subject | symmetric group | en_US |
dc.subject | characters | en_US |
dc.subject.lcc | QA333 .K87 1996 | en_US |
dc.subject.lcsh | Riemann surfaces. | en_US |
dc.subject.lcsh | Topology. | en_US |
dc.subject.lcsh | Asymptotes. | en_US |
dc.subject.lcsh | Functions. | en_US |
dc.title | Asymptotic theory of characters of the symmetric groups | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- B035252.pdf
- Size:
- 2.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version