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ABSTRACT

ASYMPTOTIC THEORY OF CHARACTERS OF THE
SYMMETRIC GROUPS

Elif Kurtaran
M.S. in Mathematics
Advisor: Prof.Dr. Alexander Klyachko
August, 1996

In this work, we studied the connection between ramified coverings of Rie-
mann surfaces 7 : X — Y of degree n and characters of symmetric group
S,.. We considered asymptotics of characters of S,, as n — oo and normalized

characters %% of S, under some restrictions.

Keywords : Coverings, Riemann surfaces, triangulations, symmetric group,

characters.
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OZET

SIMETRIK GRUPLARIN KARAKTERLERININ
ASIMTOTIK TEORISI

Elif Kurtaran
Matematik Bolumu Yiksek Lisans
Danigman: Prof.Dr. Alexander Klyachko
Agustos, 1996

Bu calismada Riemann ylzeyleri arasindaki n.dereceden 7 : X — Y dallanmig
ortiileri ile S, simetrik grubu arasindaki bagintiy1 inceledik. Ayrica, n son-
suza giderken S, simetrik grubunun karakterlerinin asimtotikleri ile normalize

edilmig ';g’) karakterleri baz1 kisitlamalar altinda ele aldik.

Anahtar Kelimeler : Ortiiler, Riemann yizeyleri, icgenlestirme, simetrik

grup, karakterler.
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Chapter 1

Introduction

1.1 Review of known results

In this thesis we will consider the asmyptotic behaviour of characters of sym-

metric group S, as n tends to co. There are at least two reasons of interest of

this problem.

i) The first one, which is not our interest of study, is its connection with
representations of the infinite symmetric group S.,. So is a nontrivial experi-
mental mode] in the theory of locally finite groups and has been studied by Za-
lesskii [1], Vershik and Kerov([2]. In the theory of representations of symmetric
group, each irreducible representation of S,, with character x, corresponds to a
Young diagram A. Vershik and Kerov[3], in their paper studied the limit form
of Young diagrams with respect to the Plancherel measure, given as di;"f)‘, for
an irreducible representation A. They obtained that, with respect to Placherel

measure almost all diagrams have the same shape, given by the function

Q(X) = %(marcsinX—i—\/l—Xz) for |X| <1
| X| for |X]>1

In the same paper, two sided bounds of the largest dimension (w.r.t

Plancherel measure)of irreducible representations of S, as n — oo is found.

Thoma, in his paper [4], considered the problem of finding limit for the ratio

xﬂ—li(f) as n — oo (called the normalized character of representation )



for geS, C Sw, n is fixed and |A] — co. He gave an explicit formula for all

normalized characters of S, as

[T (Sof + (-1 3 ary=o),
m>2 =1 =1
where
ap = limpyoo fk(/\),
n
By = limn.o, gk(A)
n
fir(A) = maz{i: (,k)e A} — k + (%), (1.1)
1

gk(A) = maz{i: (k,7) €N} — k + (),

[N}

(1.2)

o >ay...20, 4 >26,>...20, Xa;+ Y 6 <1 and p,, is the number of

cycles of length m in the permutation o.

ii) The second reason of interest of the problem is its connection with tri-

angulations of surfaces. We will focus our attention to this case ( section 1.2)

1.2 Triangulations and ramified coverings

Our approach to the problem is motivated by its connection with triangulations

of Riemann surfaces and ramified coverings. As to give an idea, observe the

following.

Let 5° be a triangulation of compact Riemann surface X, and 5" be its
barycentric subdivision. Let

fi : barycenters of triangles,

e; : centers of edges,

v; : vertices of 3 (seé fig. 1.1).

The triangulation Y gives us a ramified covering 7 : X — P', P': Rie-
mann sphere. m maps black triangles onto upper hemisphere, white triangles

onto lower hemisphere, and barycenters e;, f;,v; to 0,1 and oo respectively.

2



Figure 1.1:

Hence, we get a ramified covering with the following properties:
i) deg 7T = 3 ~triangles in J2) = 2 ~[edges in
i) Barycenters of triangles have ramification index 3,
iii) Centers of edges have ramification index 2.
It is easy to see that we have a one-to-one correspondance between triangula-
tions and coverings of sphere ramified only over 0,1,00 with ramification indices
2 over O,
3 over 1,

arbitrary indices over oo.

It is worth to mention the special attractiveness of triangulations of a Rie-

mann surface X for physicists since they are used as a model for random metric

on X (see papers 5,6).

1.3 Connection with characters

As we have seen in previous item, the problem of counting the triangulations
is particular case of counting ramified coverings of given degree and prescribed
ramification indices. It turns out that the last problem is closely related with

characters of symmetric group. This connection follows from two classical re-

sults.

i) The first is Hurwitz theorem which gives a one-to-one correspondance

between ramified coverings w: X —> of given degree and ramification indices,

and solutions of the equation

9x92 m-m9k — f 9i A~ C Sn (1.3)

up to conjugacy, where cycle lengths of gi is equal to ramification indices of

points in fibers.



If instead of P!, we consider an arbitrary surface Y of genus g, then the number

of coverings is equal to the number of solutions of the equation below, up to

conjugacy.
9192 - gslfi, ] [fo byl = 15 fihi €Sny gieCi C S, (1.4)
where [f,g] = fgf~'¢7! is a commutator.

ii) The second is Burnside theorem which gives the number of solutions of

the equations ( 1.3) and (-1.4) for an arbitrary group G in terms of the char-

acters.
#{9192-~-gk =1:g€C¢ G} — IOIHCTGI ICkl ZX a1 Xé]z) X(qk)(l.f})
#{9192-.-gk[fhhl]--'[fg)hg] =1} = lClulgzll ZgICkI ZX(JIL k+2g' 2 (gk){l-ﬁ)

where the summation is over all irreducible characters x of G, ¢; € C; are

elements from fixed conjugacy classes C;.

The theorems of Hurwitz and Burnside leads to the following formula for

the number of coverings, which is the starting point of our approach. Before,

let us remark that the number Z

mX—

1s called as “Eisenstein number

v [Autr]|
of coverings”.

Theorem 1.1 The Eisenstein number of ramified coverings m : X — Y of
degree n with given ramification indices, of the surface Y of genus gy, ramified

over k points y1,...,Yyk in Y is given by

5 L |GGy, IOkIZX(gl x(gz - x(gx) (1.7)

XY IAut'/rl (n' 2 29y k (2 2gv)

where g; € C; are elements from fized conjugacy classes C;, cycle lenghts of g;
are ramification indices in fiber 77 (y;), and the summation is over all irre-

ducible characters x of S,.

In the case Y=P', we get



Corollary 1.1 Under the hypothesis of theorem (1.1) with Y replaced by P!
we have
1 G

-XZ]P’I |Autm| n'

IZx(gl >;(glz))k 2x(gk) (1.8)

Hence, using the argument in section 1.2, we can write the following for-

mula:
The Eisenstein number of triangulations on X is equal to

1 x(63) x(g)
EiEr i IC0N 2 S L

where geSy,, C(g) denotes its conjugacy class, 6, consists of 2 cycles and 65
consists of 3 cycles. By (1.24) with gy =0,k =3,d; =2d, =3

— —) d:mean.value of cycle lengths of g.

[« N

n
gx =14 5(

1.4 Main results

Theorem (1.1) can be used in both directions, i.e. information on coverings
may be transferred in information on characters and vice versa. When the
structure of the covering is known, it is easier to carry information on coverings

to characters. Let us begin from coverings.

1.4.1 Explicit formulae

There exists several cases in which the number of coverings can be evaluated

explicitly. In each of these cases, ramification indices in the fibers are the same.

Let 7 : X — P' be a ramified covering of degree n ramified over k points

Y1, Y2, - - -, Yk with ramification indices m;, equal in each fiber. In the case
1 1 1
— 4 —+..+—2>k-2 (1.9)
m ma m

all coverings may be explicitely described in terms of finite groups of Mobius
transformations or plane Coxeter groups. Since we know the structure of these

groups, we can get explicit formulae for (1.8).



1. Elliptic Case

If
1 1 1 1
—+—+—+ ..+ —>k-2 (1.10)

my my ma myg

the possible solutions are

ai) Cyclic case : k=2, m; = my = m,

aii) Dihedral case: k=3 ,my = my; =2, mg = m,
bi) Tetrahedral case : my = 2, my = m3 = 3,

bii) Cubiccase :my =2, my =4, mg = 3,
biii) Icosahedral case : my; = 2, my =3, my = 5.

In this case, all coverings may be described using finite groups of Mébius

transformations.
Finite groups of Mobius transformations: The transformations

az +b
cz+d

T(z) = a,b,c,de C : ad—bc#0 (L.11)

are known as Mobius transformations and they form a group under composi-
tion. Finite groups of Mobius transformations are:

al) Cyclic group of rotations of order m by multiples of 2.

aii) Dihedral group of symmetries of order 2m of a regular m-gon.

bi) Tetrahedral group of 12 rotations carrying a regular tetrahedron to

itself.

bii) The group of rotations of cube of order 24.

biii) The icosahedral group of 60 rotations of a regular icosahedron.
Extended complex plane CJ{co} and sphere S? may be identified via steo-
graphic projection. Under this corresonpondance, finite groups of Mobius
transformations correspond to finite group of rotations of sphere. They are

in fact subgroups of finite Coxeter groups, as will be seen in chapter 4.

It turns out that when G is a finite group of Mébius transformations the
map 7 : P* = P'/G is a ramified covering with equal ramification indices in
each fiber, say m;, m;’s satisfying (1.10). We get the following formula for

Eisenstein number of coverings.

Theorem 1.2 The Eisenstein number of ramified coverings 7 : X — P! of

degree n, ramified over k points y,,...,yx, with equal ramification indices m;



in each fiber m=1(y;), m;’s satisfying (1.10), is given by

1

1
= . 1.12
Xw: | Autr| (2 |G| (1.12)

where G is finite group of Mobius transformations corresponding to solution of

(1.10).
Combining the above theorem with theorem (1.1) , we get the following .

Theorem 1.3 The following equalities holds

S x(on) = (=) (1.13)

;X(Uz});f()(am) _ [<i'>!éfn]; :)_' ”j% (1.14)
e - U
> x(7:) i((f;:)s)x(m:) _ 3 2.((243'—3( 53’ i (L.16)
¥x<az> o) _ <>'2'(20;'_3( 53’5’* (1.17)

-

where the summations are taken over all irreducible characters x of S, and o,

denotes the permutation consisting of = cycles of length m.

2.Parabolic Case
If

I L Iy S (1.18)

a)ym; = my = m3g = myg = 2,
bi)m1=2,m2=m3=4,
bii)m; =2, mg =3, ms = 6,



In this case, all coverings can be explicitely described in terms of affine
Coxeter groups.
Affine Coxeter groups Affine Coxeter group G is generated by reflec-
tions in sides of a k-gon A C R?. More generally, any k-gon with angles
el miz yeees ml-k satisfying ¥ mL‘ = k — 2, can be repeated by successive re-
flections in sides to cover the Euclidean plane. For m,’s satisfying (1.18), the
corresponding affine Coxeter groups are as follows:

a) Group generated by reflections in sides of quadrangle (see figure (1.2)).

bi) Group generated by reflections in sides of triangle with angles 7, T, &
(see figure (1.3)).
bii) Group generated by reflections in sides of triangle with angles 7, %, &

(see figure (1.4).

biii) Group generated by reflections in sides of equilateral triangle (see figure

(1.5).

Similar to elliptic case, we can evaluate Eisenstein number of coverings

using affine Coxeter groups.

Theorem 1.4 The Eisenstein number of ramified coverings ©# : X — P! of
degree nu, ramified over k points yy,. .., yx, with equal ramification indices m;

in each fiber m ' (y;), mi’s satisfying (1.18), is given by
; m—i—t;—' = coefficient at ¢" in [kl;[l (1-— qk)]"_u_l (1.19)

where u €N depends on the affine Cozeter group corresponding to the solution

of (1.18) more explicitely, for m;’s satisfying the case

a) p = 2,
bi) p = 4,
bit) p = 6,
biii) p = 3.

Unexpectedly, we see that right side of the equality (1.19) contains a func-
tion close to Dedekind 5 function.

Dedekind 7 function
The function n(z) = g M2, (1—q"), ¢ = €*™* is called as Dedekind 7



Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:



function. 7(z) being holomorphic everywhere and verifying the relation

-1 ,az+b a b
n(z) = e(cz+d)= n(cz—f-d) v ( . d ) ¢ SLy(Z)
where €(a, b, ¢, d) is a 24’th root of unity, is a modular form of weight ;.
Relation with p(n)
The number p(n) of partitions of n is an important object in number theory.

= = L 70

In 1917, Hardy and Ramanujan developed a method which yields an asymp-
totic formula for p(n). After some modification of Hardy and Ramanujan’s
method, Rademacher obtained the exact formula for p(n). Proof of this exact
formula is based essentially on the modular properties of the function (ll_qn).

H.Rademacher and H.Zuckerman, in their paper[8], have found the Fourier

coefficients of the modular form 7(z)~?". Using these, we get the next theorem.

Theorem 1.5 The following asymptotic formulae holds.

X(02)4 T 1 n
~ — nd — 1.20
x; x0T ey TPV (1.20)
) 2
x¢Sin X(l) 216 316 6

5 MUZ));((?))X(UG) N 2%7;% ¥ exp %ﬂ (1.22)

XeSen

5 x(os)” T nt exp(g)\/g (1.23)

1.4.2 Asymptotic formulae

In the previous item, we deduced results on characters using theorem (1.1) and
known structure of ramified coverings. Now, let us consider the other direction,

i.e. getting information on coverings from that of characters.

10



The problem of estimating the number of coverings with given ramification

indices in some extend can be reduced to estimation of the ratio —X—(% , Where
x(1)

d is mean value of cycle lengths of g ¢ S,.To see this let us write Riemann-

Hurwitz formula in the following form.

Let 7 : X — Y be a ramified covering of degree n, of surface Y of genus gy
by surface X with genus gy, ramified over k points y;,...,y; in Y. Riemann-
Hurwitz formula connecting genus of X and Y may be written in the form:

1
29x —2=mn |29 -2+ k> — (1.24)

T di
where d; = m 1s mean value of cycle lengths of g;, for g;:monodromy

permutation with cycle lengths equal to ramification indices of points in fiber
w1 (ys)-
Hence, using equality (1.7) and Riemann-Hurwitz formula we get

1 |Cy...|CH x(g1) x(gx) 1
2-2gy = Zax -2 (1'25)
)y |Autr| — (n!) Z (1))“‘ (x(1))% x(1)™=

mX—Y

Since x(1) < NEII X, l> —glg—g— = > ng%r for some constant c.
x(1)

Hence, decreases polynomially for gx > 0. On the other hand, ——L§ Erows

exponentially, as will be seen in corollary (1.3). So, estimation of rlght side in

above equality is mainly reduced to that of the ratio —’z%{—.
x(1)d

Description of problem In our study, we considered the asymptotics of
characters xg of S, corresponding to Young diagrams # under the following

conditions.
Let diagram 3 be given by b; > by > ... > b,, and the cycle structure of g

given by 1912%2 ... n". Suppose that
i) Diagram [ has fixed number of rows and ¢ has fixed number of cycles.

ii) Number of cells in each row increases as n — oo with fixed frequency, i.e.
b = B, B;is fixed as n — oo.

n

iii) Lengths of all cyles in g € S, are coprime.
iv) Multiplicity of cycles in g € Sy, increases as n — oo with fixed frequency,

ek = ay , oy is fixed as n — co.

It turns out that the estimation of the value of yp(g)as n — oo depends on

11



the solution of the following system of non-linear algebraic equation.

Y o Biii=1 26
G =B i = 1,..., 1.2
. kx’f—l—...—l—xfn ' m (1.26)
where
b;
g = —,
n
ag
Qp = —.
n

We prove the followings:

Theorem 1.6 The system (1.26) has, up to proportionality , unique positive

solution x = (z1,...,Zm) , T1 2 T2 > ...> 2, > 0.
This theorem is crucial in proving the following asymptotic formulae.

Theorem 1.7 Let us consider a sequence of diagrams B such that by > b, >
o2 by, B = % fized, and a sequence of permutations g € S, with cycle
structure 1112°2...n* such that cy, = %k is fized. If lengths of all cycles
involved in geS, are coprime, and f3; # f; , ¢ # j , asymptotics for xs(g)

as n — 0o is given as:

(@) | /m I 1
xp(g) ~ R (1 - —J) T (1.27)
(27rn) 2 1<g Zi i=1 Hii

where ;s are posilive roots of the system (1.26).

w(z) = Y aglog(af +...+2%) —~ 3 Bilogz; (1.28)
=1

%
and H;; is the principal minor of order m — 1 of the quadratic form in variable

di;

n smogkd? S ot
Hess(w) = k* o ( =L (=) (1.29)
) ;; ¢ A ( Ty zf

Taking o; = 0, 1 > 0, we get z; = S, w(z) = H(F), and get the

following.

12



Corollary 1.2 The asymptotics for the dimension of the irreducible represen-

tation corresponding to diagram f with different lengths of rows is

M) TTie;(1 - o
<~ ) (1.30)

1) ~ s
xell) (2mn)"= Vi P

where H(f) = — Y, Bilog(B;) is the entropy function.

We observe that the above asymptotic is no more valid if z; = x; for some
i,j. When diagram is rectangular, ; = ; V 4,5. In this case, we evaluated

the asymptotic for xg(g) using Selberg integral.

Theorem 1.8 Under the assumptions of theorem (1.7), if lengths of cycles

involved in g are coprime and the diagram 3 is rectangular , i.e. all rows are

of the same length, then

xs(9) ~  (m)¥ T[4t (131)

) —
where Zk ar = g, Zk k2ak =d.

From theorem (1.7), it follows that main term in asymptotic is the expres-

sion e™ (@) hence it is essential to estimate w(z).

Theorem 1.9 Let x be the unique positive root of (1.26), w(z) as in theorem
(1.28) and B be diagram described as in theorem (1.7). Then

1
w(z) > 7 H(p)

The equality is only if all cycles are of the same length or diagram is rectangu-

lar.

Corollary 1.3 If the diagram 3 is not rectangular and if all cycles involved in

g are of different length, then —X’Z(—z)&- exponentially increases to co as n — oo.
xp(1

In addition to these, in this thesis we proved the following theorem, which

solve the problem proposed by Zalesskii.

13



Theorem 1.10 If
i) gn 1s any sequence of elements of S, with fized number of cycles,

i) X\(n) 15 any sequence of faithful characters of S, labelled by partitions A\(n),
then

Xa(n)(9n)
X (1)

— 0 asn — oo. (1.32)

14



Chapter 2

Preliminaries

This chapter contains basic definitions and theorems needed for the rest of

chapters.

An important part of the theory of functions of a complex variable is de-
voted to the study of algebraic functions. An analytic function w = w(z) is

called an algebraic function if it satisfies a functional equation
A(z,w) = ag(2)w™ + a1(2)w™ ™ + ... + ax(2) = 0,a9(z) # 0 (2.1)

in which the a;(z) are polynomials in z with complex numbers as coefficients.
From this algebraic equation in w , we note that each value of z determines

several values of w, so that w is a multiple-valued function of z.

Starting from a single function element of an algebraic function w(z) ,we
could use analytic continuation to piece together the whole function and study
in this way its multiple-valuedness. Riemann’s approach to this situation is to
look for a new surface(instead of the z-plane) on which to consider the algebraic
function defined, and on which it is an ordinary single-valued function. This

surface is called a Riemann surface.

It can be shown that the Riemann surface for any algebraic function is
topologically a sphere with g handles and the algebraic function is a single-

valued function on this surface(For interested , refer [2]).

This number g is called as genus of the surface. The genus can be calculated

by using polygonal subdivision.

Definition 2.1 A polygonal subdivision M of a surface S consists of a finite

15



set of points of S, called vertices, and a finite set of simple points on S, called
edges, such that

i) every edge has two end-points ,these points being vertices,

it) edges can only intersect at their end-points,

iii) the union of edges is connected,

iv) the components of the complement S\ M are home()mm‘pvhic to open

discs. These components are called faces.

It can be shown that every compact, connected surface S has a polygonal
subdivision. This was first proved (for Riemann surfaces) by T.Rado in 1925.

The Euler characteristic of a surface S is x(5) = x(M) = V—-FE+ F
where M is a polygonal subdivision of § with V vertices, E edges and F faces.

Homeomorpic surfaces have the same Euler characteristic. [17]

Theorem 2.1 The Euler characteristic of a compact, connected, orientable
surface S of genus g is given by
x(S) =2 —2g.

Now , we can introduce covering surfaces of Riemann surfaces.

Definition 2.2 A continuous surjection p ;§—> S ,where S and § are Riemann
surfaces, is a ramified covering map of S if each seS has an open neighborhood U
and a homeomorphism ¢ : U — D (open unit disc) such that for each connected
component V of p~'(U) there is a homeomorphism ¢ : V — D satisfying

dop = w00 for some integern > 1 (7, : D — D,z — 2").

We have n = 1 iff p is a homeomorphism V — .U, in this case p is called

an unramified covering map.

Ifn > 1 for some V then we say that the unique element s of V. (\p~'(s) is
a branch point of order n — 1 (Since p is like 7, locally n-to-one near 5). The
points of S over which there exists branch points are called ramified points and

the integer n is called ramification index of the ramified point.

In case when S is simply connected, p is called a universal covering map.

Theorem 2.2 (Riemann-Hurwitz) Let p :5— S be a ramified covering of

degree n. The following formula is valid

2g; — 1) = 2n(g, — 1) + Ylma — 1), (22)

16



where the summation is taken over all ramified points z in S with ramification

index my.

We can classify Riemann surfaces according to their universal coverings.

Theorem 2.3 Every compact Riemann surface has a universal covering.
In case of genus 0 it is its own universal covering.
In case of genus 1, its universal covering is the complez plane C.
In case of higher genus its universal covering is the wupper halfplane

(Lobachevsky plane).

For any surface R, we can select a point z on R and consider the class C(z)
of all closed curves from z. Identifying curves in C(z) which are homotopic
to each other and introducing a product on the homotopy classes, we can
construct a group which, for the moment we denote by (R, z). It is easy to
see that any two such groups (R, z) and 7 (R, w) are isomorphic for R path
connected. Hence we can refer to both as the fundamental group m(R) of R.
For a simply connected R, the group 7;(R) is the trivial group since any closed

curve from z is automatically homotopic to the point curve z.

Definition 2.3 The degree of a covering space ()’2,7!‘) of X is the cardinal of
a fiber. If the degree is m, one also says that (X,m) is an m-sheeted covering

of X, or an m-fold covering (It can be proved that all fibers in a covering space

have the same cardinal) .

Theorem 2.4 Let (X, z,) be a pointed space, let ()}, 7) be a covering space of
X, and let Y = 77" (z,). Let the ordering of the points in the fiber over the
base point x, be : n71(z,) = 21, 22...2,. Path lifting defines a homomorphism

(called the characteristic homomorphism for 7 ):
x(m):m(X) — S,

of the fundamental group m (X)) into the symmetric group of n elements. Image

of x() is called monodromy group of (X,).

Main idea in this theorem is as follows: Given a loop {: [0,1] — X in X
based at zo ¢ X , i.e. [(0) = I(1) = z, , there exists unique lifting of / to a path
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l; - 0,1] —X in X with l;(0) = z; Vi=1,..n (So the fundamental group acts
transitively on fibers). Since /;(1) is again a point in the fibrer~!(z,) , these
liftings define a permutation 7¢S, such that [;(1) = zr(i)- T depends only on the
homotopy class of the loop /, and the assignement of 7 to the homotopy class
of [, defines a homomorphism (). If we change the base point or change the
ordering in the fibre over the base point, this will change x(r) by a conjugation

in S,.

Now , let us define what is meant by equivalent( or isomorphic ) coverings.

Definition 2.4 Two covering spaces ()7, q) and ()},p) of a space X are equiv-
alent if there ts a homeomorphism ¢ :Y— X such that q = pp.

Theorem 2.5 Two n-fold coverings are equivalent iff their characteristic ho-

momorphisms are conjugate homomorphisms.

2.1 Covering Transformations and Galois Correspon-

dance For Coverings

Definition 2.5 If (X,7r) s a coverzng space of X, then a covering transfor-
mation is a homeomorphism h X——)X with mh = w. Define Aut(m) as the set
of all covering transformations ofX. Under composition of functions , Aut(w)

forms a group.

By theorem (2.4), a covering 7 :X— X of degree n, gives an action of the
fundamental group of X , on the set of n elements, i.e. on the general fibre
7~!(z,), z,eX. The stabilizer m, of a point yer~'(z,) is a subgroup of m;(.X)
and corresponding to another point y' in the fibre , a conjugate subgroup of .

appears.

We have the following theorem about subgroups of 7;(X) and coverings of

X [for proofs, see [10]].

Theorem 2.6 The following correspondances hold
1) 3 a one-to-one correspondance between conjugacy classes of subgroups H

of G = m(X) and equivalence classes of coverings = of X , where degm =[G
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Hj.

2) Connected coverings corresponds to normal subgroups of m(X).

3) 3 a one-to-one correspondance between coverings of X |, of degree n, and
the actions of m(X) on n element set Y, where conjugate actions correponds to
equivalent coverings by theorem (2.4). In case when the covering is connected,
this action is transitive.

4) Autr = AutgY = {o0:Y > Y : 09 = go V¥V g e G} where G is the
fundamental group of X. Otherwise stated
Autr = Cy,,, o) where {g1,..,gx} is the set of generators of m(X) , and

Clgr,mgx) denotes its centralizer in S,.

We can summarize the Galois Correspondance considered in this theorem

as below: ( « denotes one-to-one correspondance )

X=X covering of degree n up to isomorphism « Subgroups H of 7 (.X)

up to conjugacy < Actions of 71(X) on an n-element set.

Remark 2.1 These notions are valid for non-ramified coverings but since re-
moving ramified points leads to non-ramified coverings , we can use them in

our study dealing with ramified coverings of sphere.

Disconnected Coverings Now let us consider the case when =« X——> X 1s
non-connected covering. i.e. X is union of connected components X;, X U; X
, where the restriction 7|x, = m; gives connected covering of X. By collecting the
isomorphic components, we can write )N(: U; m; X; , where X;’s are pairwise

non-isomorphic components and

m;X; = X;UX;U. .- UJX

my times

Symmetric group S, acts on the isomorphic components mX; in the fol-
lowing way : Labelling m isomorphic components X; by X, X,,.., X,, for
0€Sm , o(X1U..UXn) = Xoa)U... U Xs(m). In this way , group of permuta-
tions of isomorphic components, namely ] S,,, becomes a subgroup of Autr.
Moreover it can be shown that:

i) [1; Autm; is a normal subgroup of Autr.

i), Autm; N [[Sm, = 1

Hence, Autr is semidirect product of []; Autm; and the group of permutations
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of isomorphic components. And

k !
|Autr| = ] |Autr| [] m;! (2.3)
=1 7=1

where k is the number of connected components, m; is the number of isomor-

phic components, Z§~=1 m; = k.
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Chapter 3

Connection between coverings and characters

In this chapter we will prove the following theorem which gives the connection

between coverings and characters of S,,.

Theorem 3.1 The Fisenstein number of ramified coverings m : X — P! of
degree n ramified over k points yi,...,yr in P! with given ramification indices

s given by

L GG ... |Ck]  x(g1)x(g2) - - - x(gx)
D e | D Dl N (31

w:X—rPl
where the summation is over all irreducible characters x of Sy, g; € C; C S, are
elements from fized conjugacy classes C; and cycle lenghts of g; are ramification

indices in fiber 7 1(y;).

This connection is due to two classical results of Hurwitz and Burnside.

3.1 Hurwitz interpretation of solutions

For a better understanding of Hurwitz interpretation of solutions, let us first

consider what is really meant by the fundamental group of a surface R of genus

g , by giving some examples.
The torus, and manifold of genus g can be described as in figures (3.1) and

(3.2). One can calculate the fundamental group from these polygons. The

fundamental group w(R) is generated by the loops ay, ..., ag, b1, .., b, with the
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Figure 3.2: manifold of genus g’

relation []; a;b;a7 0! = 1 ie.
m(R) = {a1,a2,...,aq, b1, ..., b, : [a1B1]...[a,h,] = 1}, (3.2)

where [a;b;] = a;b;a7'b7'] is a commutator.
The fundamental group of surface Y with the points yy,ys, ..., yx removed is

given by
m(Y) = {a1, .., a4, b1, .., bg, 1, .., ck; [arby][azby].. . [aghy]es...cr, = 1} . (3.3)

Where ¢;’s corresponds to loops aroud the removed points.
If Y is P': Riemann sphere with the points y,, 2, ..., yx removed, its fundamen-

tal group is given by
m(Y) ={e1,..,ck;¢1.006 = 1} . (3.4)

Remark: When 7 : X — Y is a ramified covering map of degree n ramified
over k points, lifting ¢; leads to monodromy permutation g; € S, lifting 2¢ non-
contractible cycles ay, by, .., a4, by leads to permutations fi, hy, .., fy, by € S,.

We can now state Hurwitz interpretation of solutions.

Theorem 3.2 (Hurwitz) 3 a one-to-one correspondance between the solu-

tions of the equation
gig2..-gx = 1 :gi € C; C 5, (3.5)

up to conjugacy, and ramified coverings m: X — P! of degree n up to isomor-
phism, ramified over k points yi,...,yx with prescribed ramification indices.

Cyecle lengths of g; are ramification indices in fiber m='(y;).
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Let us outline the proof.

Proof:
i) Let S = P\{y1,-..,9} , ™ X\ '(y1,...,ys) — S. Then, m(S) =
{c1,€2y ... ek s cica...cp = 1}. It is easily seen that there exists a one-to-one

correspondance between solutions of the equation
9ig2--.gxk = 1 : g €5, (3.6)

and action of m1(.S) on an n-element set, where conjugate actions corresponds
to conjugate solutions. Hence by theorem (2.6), 3 a one-to-one correspondance
between coverings 7 : X — P! of degree n up to isomorphism and solutions of
above equation up to conjugacy.

ii) The set g1, ..., gx are monodromy permutations due to liftings of loops gen-
erating m1(.5). By definition, at each branch point in X of ramification index
m, ramified covering 7 looks locally like 7, : 2z — 2™. Hence, monodromy

oo Therefore, cycle lengths of ¢; are ramifica-

cyclically permutes zm to e
tion indices in fiber 71 (y;).
Combining i and ii proves the theorem.

The following theorem may be proved in much the same way as

theorem(3.2).

Theorem 3.3 (Generalized Hurwitz theorem) 3 a one-to-one correspon-

dance between the solutions of the equation
Qg2 gelfn, fol - [foshgl = 10 g0 € Ci € Sy, fiygi € Su (3.7)

up to conjugacy and coverings w : X — Y up to isomorphism, where 7 is as

described in above theorem, with P! replaced by an arbitrary surface Y of genus

g.

3.2 Burnside’s interpretation of solutions

Burnside theorem gives the number of solutions of the equations (3.5) and (3.7)

for an arbitrary group G in terms of characters as follows [9].

CilCl... IC (g
#{ggs...9k = 1 :g:€CiCG) _ (Gl 1G] ZX(g‘)X(Qz)k_z X(9k)s )
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#9192 gelfv, ] [fo, byl = 1 g: € C hg,ngS } = (3.9)

|01||C'2 ICkl ZX(gl (gk)
|G'|‘ 2g k+29 2

where the summation is over all irreducible characters x of G, ¢; € C; are

elements from fixed conjugacy classes C;.

3.3 Main theorem

Combining Hurwitz’s and Burnside’s results, we get the following theorem,

which is the starting point of our approach.

Theorem 3.4 The FEisenstein number of ramified coverings 7 : X — P' of
degree n ramified over k points yi,...,yx in P' with given ramification indices

is given by

| Cil|Cy|. .. |C
2 Tl T () (KO
where the summation is over all irreducible characters x of S,, g; € C; are
elements from fized conjugacy classes C; and cycle lenghts of g; are ramification

indices in fiber 771 (y;).

Proof:
i) It suffices first to show

n!
#Hoge. .6 = 1:0€CiCSH) = > —, (3.11)
P |Autr|

where the summation is taken over ramified coverings 7 : X — P' described
as in the statement of theorem. By Hurwitz theorem, 3 a one-to-one corre-

spondance between solutions of g195...9x = 1: g; € C; up to conjugacy and
ramified coverings 7 : X — P! with given degree and ramification indices. Let

{1,92,---,9x} be a solution of g195...9x = 1: ¢g; € C;. We have
#(solutions conjugate to ){g1,92,.--,9k} = [Sn: Ciorgara})» (3.12)

where Clg, g,,....0x) 1S the centralizer of the set {g1,g2,...,9x}.
By theorem (2.6)

O{ghg2v"1gk} = AUtﬂ. (3.13)
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and the result follows.

ii) Since by Hurwitz interpretation of solutions g;’s are monodromy permu-
tations in fiber 7=!(y;), cycle lengths of g; is equal to ramification indices of
points in fiber. Combining (3.11) with equation (3.8) in Burnside theorem for
G = S,, implies the desired result.

Using similar ideas, the folowing theorem may be proved.
Theorem 3.5 The FEisenstein number of ramified coverings 7 : X — Y of

degree n with given ramification indices, of the surface Y of genus gy, ramified

over k points yy,...,yr in Y is given by

> 1 GGy |Gk Z X( 91 x(gz - x(9¢) (3.14)

Xy |Aut7r| (n')X(Y (1))*- X(Y)

where x(Y) = 2 — 2gy is the Euler characteristic of the surface Y, g; € Cj,
cycle lenghts of g; are ramification indices in fiber 7=1(y;), and the summation

is over all irreducible characters of Sy,.
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Chapter 4

Explicit Formulae

In this chapter we will give a detailed exposition of carrying information on
coverings to that of characters of symmetric group and give our results.
Classification of ramified coverings with the same ramification in-

dices.

Given a ramified covering 7 : X — Y with the same ramification indices in
each fiber, we will determine the type of components of X using ramification

indices.
We will use the following Riemann-Hurwitz formula.

Let m : X — Y be a ramified connected covering of degree n, of the surface

Y of genus gy by surface X of genus gx. Then

2Agx —1) = 2n(gy —1) + 3 (ma—1) (4.1)
zeX

where the summation is over all z € X with ramification indices m,.

In the case of Y = P! and of equal ramification indices m; in each fiber

7~ (y;), the Riemann-Hurwitz formula can be written in the following form:

X(X) = n [émi - (k—Q)] , (4.2)

for 7 : X — P!, ramified over k points yi,...,yx.

So, if all ramification indices in a fiber are equal, the above equality gives
us. a tool for determining the components of X. Namely, we have three cases.
i) Elliptic Case: If % | ;nl—‘ > k — 2, then all components of X are Riemann
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sphere.
ii) Parabolic Case : If % ;11_‘ = k — 2, then all components of X are torus.
iii) Hyperbolic Case : If Y% mL. < k — 2, then all components of X have

genus greater than 1.
In cases 1) and ii), we will get an explicit formulae for the number of such cover-

ings. There exists no explicit formulae in hyperbolic case. Asymptotics of the
number of coverings in hyperbolic case is closely connected with asymptotics

of characters of symmetric group, and will be studied in the next chapter.

Let us first concentrate on elliptic case.

4.1 Elliptic case

In elliptic case we will deal with ramified coverings 7 : X — P! ramified over k&

points with equal ramification indices, say m;, in each fiber and m;’s satisfying

Fol
Yo— > k-2, (4.3)
=1 M
There exists finitely many solutions for m;’s, these are

al) Cyclic case : k=2, my = my = m,

aii) Dihedral case: k=3 ;m; = my =2, m3 = m,

bi) Tetrahedral case : m;y = 2 , my = mg = 3,

bii) Cubiccase :m; =2, my =4, mg = 3,

biii) Icosahedral case : my = 2, my =3, mg = 5.

4.2 Description of coverings in terms of triangulations

We will explicitely describe ramified coverings 7 : P! — P' in terms of trian-

gulations of P'.

Definition 4.1 A bicolored triangulation on a surface is the decomposition of
the surface into triangles such that each edge has a neighborhood colored black

and white.

Remark 4.1 Since each edge has a neighbourhood colored black and white, just

three indices can be used to label each vertex of triangles.
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Bicolored triangulation of a surface X defines a ramified covering of P!'.
Example 1: Let 3° be a bicolored triangulation on X, with vertices of triangles
labelled by a, b and c. Let 7 : X — P! sending

1) black triangles to north hemisphere,

ii) white triangles to south hemisphere,

iii) vertices a,b, and ¢ to 0,1 and oco respectively.

Then, 7 is a ramified covering map ramified over 0,1 and co. Ramification
points in X are the vertices of triangles in J with ramification index at a

vertex equal to 1 ( # of triangles meeting at the vertex).

Proposition 4.1 Let 7 : X — P' be a ramified covering of degree n, ramified
over three points a,b,c € P'. Then 7 induces a bicolored triangulation T on X.
It has the following properties:
i) # (triangles in)y, = 2 degm,

)4 (triangles meeting at a vertex j) = 2m;, m; : ramification indezx of j.

Proof: Joining the points a,b and ¢ partition P' consisting of two triangles,
triangle abc(colored black) and its complement (colored white). Topologically,
it can be assumed that a,b,c are on the equator of P' hence dividing the
sphere into two hemispheres north (colored black) and south (colored white)
hemispheres. 7 is continous, hence m~'(abc) is simply connected. Labelling
preimages of vertices a,b,c by the same letters, a bicolored triangulation of X
is obtained.

i) Let z, € P! : unramified point inside triangle abc. deg 7 = n implies
7~1(2,) lies in n triangles in X colored black. Similarly, for z; € P' unramified
point in the complement of abc m~!(21) lies in n black triangles. Hence giving

2n triangles in X, n of them are inverse images of north, n of them of south

hemisphere.
ii) Follows from the fact that at a point with ramification index m;, 7 looks
locally like 7; : 2z — 2™, Combining the above example and above

proposition we get the following theorem.

Theorem 4.1 There ezists a one-to-one correspondance between bicolored tri-
angulations Y. on surface X and ramified coverings m : X — P! with given
degree and ramification indices, ramified over 3 points, such that

i) #(triangles in)y, = 2 degm

ii)# (triangles meeting at a vertez j) = 2m;, m; : ramification indez of j.
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As we will see, in elliptic case all coverings can be explicitely described using
finite groups of Mébius transformations.

Finite groups of Mdbius transformations: As explained in chapter 1, fi-
nite groups of Mobius transformations are:

ai) Cyclic group of rotations of order m by multiples of 2;”

aii) Group of rotations of regular m-gon (dihedral group) of order 2m.

bi) Tetrahedral group of 12 rotations carrying a regular tetrahedron to

itself.

bii) The group of rotations of cube of order 24.

biii) The icosahedral group of 60 rotations of a regular icosahedron.
and they correspond to finite groups of rotations of sphere [for details,see 7].
In fact, these are highly related with finite Coxeter groups.

Finite Cozeter groups are generated by reflections in planes A € R all
passing through the origin. Finite groups of Mdbius transformations corre-
spond to subgroups of finite Coxeter group of index 2. More explicitely, each
group listed above is the subgroup of
ai) Finite Coxeter group of order 2m generated by reflections in planes of sym-
metry of a regular m-gon.
ail) Finite Coxeter group of order 4m generated by reflections in planes of sym-
metry of dihedron.
bi) Finite Coxeter group of order 24 generated by reflections in planes of sym-
metry of regular tetrahedron.
bit) Finite Coxeter group of order 48 generated by reflections in planes of sym-
metry of cube.
biii) Finite Coxeter group of order 120 generated by reflections in planes of
symmetry of regular icosahedron.

Regular polytopes Polytopes are geometrical figures bounded by portions

of lines, planes or hyperplanes. In two dimensional geometry, they are known
as polygones and comprise figures as triangles, squares e.t.c. In three dimen-
sional geometry, they are known as polyhedra and include figures as tetrahedra,
cubes e.t.c.
Remark A plane p-gon is said to be regular if it is both equilateral and equian-
gular, and denoted by {p}. A polyhedron is said to be regular if its faces are
regular and equal, while its vertices are all surrounded alike. If its faces are
{p}’s, ¢ surrounding each vertex, the polyhedron is denoted by {p, ¢}.

There are 5 regular polyhedra:
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1){3,3} Tetrahedron,

2){3,4} Octahedron,

3){4,3} Cube,

4){3,5} Icosahedron,

5){5,3} Dodecahedron.

Rotation groups of regular polyhedra Two reciprocal polyhedra {p,q}
and {g,p} have the same rotation group. The center of {p, ¢} is joined to ver-
tices, mid-edge points and centers of faces and rotations of polyhedron consists

of rotations through angles Z'fT", , %;ﬂ, about these respective lines [For de-

tails, see 18].

The following example is crucial for describing ramified coverings = : P! —
P! using finite groups of Mébius transformations.
Example 2: Let G be a finite group of Mobius transformations. Consider the
orbit space P'/G and the natural projection 7 : P! — P'/G. = is given by
m(z) = [z] where [z] denotes the G-orbit of z. In fact, the quotient space has
genus 0 and hence is just Riemann sphere due to Riemann-Hurwitz formula.
Hence, 7 is a covering of sphere by sphere, with the following properties
i)deg m = |G|,
ii) z € P' is ramified iff |[2]] < |G| iff C, = {g€ G : gz = z} # 1. Hence,
ramification index of z is equal to |C,|.
iii) If G is one of rotation groups of regular polyhedra, ramification points are

f: center of faces, e: mid-edge points and v: vertices. 7 is ramified over three

points a,b,c , in P!, 77Y(a) = f,771(b) = e,77!(c) = v, with equal ramifi-
cation indices my, m2,m3 in each fiber. m; = |Cocel,m2 = |Chertec|,ms =
'Cedgf:l-
Using rotation groups of regular polyhedra, we can give the following table.
G |G| | |Cracel | |Cuertes| | [Ceugel
tetrahedral | 12 3 3 2
cube 24 3 4 2
icosahedral | 60 5 3 2

iv) If G is cyclic group of rotations by angle 2 about a line, 7 is ramified over

two points with equal ramification indices m; = my = m in each fiber. v) If
G is rotation group of order 2m of dihedron, 7 is ramified over three points a,b,
and c, with equal ramification indices in each fiber. 77'(a) = m summits,
7~Y(b) = mid-edge points, 77'(c) = poles of dihedron and ramification

indices are : m; = my = 2, msy = m respectively.
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The corresponding bicolored triangulation for example 2: By propo-
sition (4.1) for m : P' — P'/G with degr = |G| each finite group G of Mébius
transformations partition the sphere into 2|G| symmetric triangles which meet
in sets of 2m; at vertices with ramification index m;. The corresponding tri-
angulation for each G is as follows:

i) G:cyclic group of order m.

2m lunes.

ii) G:dihedral group of order 2m.

Decomposition of sphere into 4m triangles. 4, 4 and 2n triangles meeting at
each vertex respectively.

iii) G:tetrahedral group.

Decomposition of sphere into 24 triangles. 4, 6 and 6 triangles meeting at each
vertex respectively.

iv) G:Group of rotations of cube.

Decomposition of sphere into 48 triangles. 4, 6 and 8 triangles meeting at each
vertex respectively.

v) G:icosahedral group.

Decomposition of sphere into 120 triangles. 4, 6 and 10 triangles meeting at

each vertex respectively.

Theorem 4.2 Let 7 : P! — P! be a ramified covering ramified over yy, ..., yx
with equal ramification indices m; in each fiber 7~ (y;), m;’s satisfying (4.3).
Then 7 is isomorphic to 7g : P' = P'/G, i.e. factorization by one of finite

group of Mébius transformations.

Proof: By theorem (4.1) it suffices to show that = and 7 induce the same

triangulation on P'. Degree of * = n may be found by Riemann-Hurwitz

formula

|
2 =n [25 - (k—2)J :
Triangulation correponding to ¢ for each G' was analyzed in example 2. If we
investigate each case corresponding to possible values of m;’s, we observe that
the bicolored triangulation corresponding to 7 is the same as that of mg, for
some finite group of Mébius transformations. Namely,

i)Ifmy = my = m,degn = m,w ~ 7g for G: cyclic group.

i) [fm; = my = 2, myg = m, degr = 2m, ™ ~ 7g for G: dihedral group.

31



m)Ifm; = 2,m; = 3,mg = 3,degm = 12, 7 ~ 7g for G: tetrahedral

group.
iv)Ifmy = 2,my = 3,m3 = 4,degm = 24, 7 ~ 75 for G: group of
rotations of cube.

v)Ifm; = 2,my = 3,m3 = 5,degm = 60, 1 ~ wg for G: icosahedral

group.

Proposition 4.2 Let m : P' — P!/G be a connected covering map, G: finite
group of Mobius transformation. Then, Autr = G.

Proof: Clearly G C Autwr. Conversely, let h € Autm, h # identity. Then h
has no fixed points. i.e. hz; = z; for 2, z; in the same fiber 771(z). G acts

transitively on fibers, so dg € GG such that gz; = z,. We have
gz = 29 = hg_l(ZZ) = 22. (44)

Since hg~! € Autm and hence has no fixed points unless it is identity map |,
last equality implies that A = g. So Autm C G. And the result follows.

As we have seen in theorem (4.2), all connected coverings of P' ramified
over k points yi,...,yx with equal ramification indices, m;, in a fiber 771 (y;),
m;'s satifying

k
1
Yo— > k-2
1=1 m;
are isomorphic. Hence, we can give the following theorem for non-connected

coverings 7 : X — P'.

Theorem 4.3 The FEisenstein number of ramified coverings = : X — P' of

degree n, ramified over k points yy,...,yx, with equal ramification indices m;
in each fiber 7=1(y;), m;’s satisfying
k
1
Yo— > k-2,
1=1 m;
s grven by
1 1
Z A t = n_\| ]ﬁr ? (45)
= [Autr] = (g [GIE

where G: finite group of Mobius transformation corresponding to solution of

™m;’s.
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Proof: We have X = U; X; . X; ~ P!, and Vi 7|x, = m; a connected
covering of sphere ramified over k points y,...,ys, With equal ramification

indices m; in each fiber 77!(y;), m;’s satisfying

L |

Z— > k—2.

By theorem (4.2) 7; ~ 7 for G : finite group of Mobius transformations deter-
mined by solutions for m;’s. Hence, each connected component is isomorphic.

Since by example 2, degm; = |G|Vi, we have

n

where m is the number of connected components in X. And, by proposition

(4.2)

[Autm;| = |G]. (4.7)

Using (2.3) in chapter 2 with k = I_gle’ I = 1 we get

n

IGI)! |G| (4.8)

|Aut(7)| = (

and the result follows.
Combining the above theorem with main theorem in chapter 3 , we get the

following.

Theorem 4.4 The following equalities holds

S x(on)? = (=) m¥ (4.9)

x(02) x(om) _ [3)25] (2)tm? (4.10)

xoo? x(ox) _ [(3)033]° (32t (1)

(4.12)

33



o 2) 25 (2)!135 (2)!5%
ZX( 2 ) ( ) — (z) : ('3)1 755') (413)
( ) n! (60)% (g5)!
where the summations are taken over all irreducible characters x of S, and o,,
denotes the permutation consisting of = cycles of length m in conjugacy class

C; CS,.

Proof: Each equation can be proved similarly. Let us prove one of them.
Proof of (4.12):
mp; = 2, my = 3, maz = 4 case.
i) By theorem (4.3) and theorem (4.2)
1 1

X,r: |Autr| — (Z)24%
where the summation is over all ramified coverings 7 : X — P! of degree
n, ramified over 3 points y, y2, y3 with equal ramification indices, m;, in each
fiber 771(y;), m1 = 2, my = 3, mz = 4. From theorem (4.2) G is the group
of rotations of cube, |G| = 24 and combining with theorem (4.3) statement

(4.14)

follows.
ii) By theorem (3.4) in chapter 3

_ |GGG o3)x(o3)x(04)
2 |Aut7r| (n))? ZX 2(1) ! (4.15)

where the summation is over all coverings 7 : X — P! as described in i) and

n!

|Ci| = @ 2E (4.16)
n!

Cal = Fyrgy (4.17)
n!

1Cs| = o (4.18)

(4.19)

The result follows combining i) and ii).

Now, let us consider Parabolic case.

4.3 Parabolic case

In parabolic case, we will deal with ramified coverings = : X — P! ramified
over k points y;, . . ., yx, with equal ramification indices m; in each fiber 7= (y;),
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and m;’s satisfying

1
— = k-2. :
: 2 (4.20)

2

1=1

Hence, by Riemann-Hurwitz formula, X turns out to be union of tori. The

possible solutions for m;’s are:

aym; = my; = myg = my = 2,
bi)m; = 2, my = m3 = 4,
bii)m1:2,m2:3,m3:6,
biily m; = my = mz = 3.

Main difference between elliptic and parabolic case 1s the following:
Let 7 : X — P! be a ramified connected covering of degree n, ramified over
k points y1,...,yx with equal ramification indices m; in each fiber 7=!(y;). In

elliptic case, Y5, m% > k—2, hence degree m can be found by Riemann-Hurwitz
formula
£l
2—2gx = n[Z——(k—2)] :
=1 m;
Whereas in parabolic case two sides of the equation vanishes. So, it is not

possible to find degree 7 using this formula.

4.3.1 Description of connected coverings

We have seen that Galois correspondance for coverings gives a one-to-one
correspondance between coverings w X — (P'\{y1,...,y%) and subgroups
H C m(P"\{y1,...,yx) of index n. If the ramification in fibers 7~!(y;) are
equal to m;, it turns out that there exists a one-to-one correspondance be-

tween such coverings and subgroups of index n of the group with generators

61,...,6; and relations

51m1 :(Szm3 — ... :(Skmk :5152...6k - ]. .
Denote this group by I't(my,...,mi). We will see in the next section that
[t is a subgroup cof index 2 in affine Coxeter group I'(my,...,my). So, to

understand the structure of coverings, we have to focus our attention to affine

Coxeter groups.
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Affine Coxeter groups

Affine Coxeter groups are generated by reflections in sides of a k-gon A € R

k
: . ,r e 1
More generally, any k-gon with angles m - m, satisfying > — = k—2
. . . . i=l N g
can be repeated, by successive reflections in sides to cover the Euclidean plane.
Affine Coxeter group I'(m,, ..., my) can be described as an abstract group with

generetors Ry, Ry, ..., Ry, satisfying
R2=R}:=...=R* = (RiRy)™ = (RyR3)™ = ... = (ReR)™ =

where R; is the reflection in the i’th side of the polygon. The elements of
the group either preserves or reverses orientation according as the number of
reflections in the product is even or odd. There is a subgroup of index 2
consisting of rotations and translations alone, these being the only orientation-
preserving transformations. We call this subgroup rotation subgroup of affine

Coxeter group.

Rotation subgroup 't (my, ..., m) of affine Coxeter group I'(my,...,my) can
be described as an abstract group with generators 4y, ..., dx satisfying
61m] - 62m2 = ...= 6kmk - 5162 .. .5k =1 , (421)

where §; = R;R;;;. Hence, §; correspond to rotation around the corresponding
vertex of polygon by angle 727"-

In chapterl (1.4.2), the affine Coxeter groups corresponding to solutions of

k

| . : . :
Z — =k — 2 are given. In the corresponding figures, regions with the same
=1 m;
color represent orbits of regions under the action of rotation subgroup of affine

Coxeter group.

Index [I't : L]

The translation group L is generated by two translations and the transforms
of any point by such a group make a 2 dimensional lattice. For the following
part of the section, the index [['t : L], where L is the translation subgroup of
['t will be of use. So, let us find these indices for each affine Coxeter group as
listed in chapterl (1.4.2).

[[: Tt : L) =[T: L] Since [[: T*] =2, 2l : L} =[[": L]. [[': L]
can be found by comparing number of fundamental polygons for I' and L.
The fundamental polygons for I' and L corresponding to each Coxeter group
[' given in chapter 1, are given in figures (4.1)-(4.4). First figure shows funda-
mental polygon for [' and second that of L.

Hence, we have
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Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

37



Table for index [['* : L]

a) [[': L] =4,[I" : L] = 2 for '(2,2,2,2): group generated by reflections in
sides of quadrangle.

bi) [I' : L] = 8,[I'" : L] = 4 for I'(2,4,4): group generated by reflections in
sides of triangle with angles 7,7, 5

bii) [I': L] = 12,[I't : L] = 6 for I'(2,3,6): group generated by reflections in
sides of triangle with angles 7,7, Z

biii) [I' : L] = 6,['t : L] = 3 for I'(3,3,3): group generated by reflections in

sides of equilateral triangle.

Proposition 4.3 Connected coverings 7 : X — P! of degree n, ramified over k

points y1, ..., yx in P' with equal ramification indices m; in each fiber = (y;),
m;’s satisfying ({.20), corresponds to subgroups I'{ of translation group L C
I*(my,...,my) such that [t : ] =n.

Proof: By Galois correspondance for coverings, 3 a one-to-one correspondance

between such coverings 7 : X — P! and subgroups ['{ of 't (m,,...,my) such
that [t : ['{] = n. Let

G={g1,--»9k : G1---Gx=91"=...=g.*=1,9: € C; C Sn},

g;:monodromomy permutations due to liftings of loops around ramified points,

product of cycles of length m;. We have a surjective homomorphism

rt—-Gcs,, (4.22)
(5,' — ;.

For connected covering G acts transitively on n element set and
rt/rt =G/G, ~{1,2,...,n},

where Gy = {g € G : g1 =1}.

I'* acts transitively on residue classes ['V/T'F ~ {1,2,...,n}.

g; € S, decompose in cycles of length m; <= oI #~0f k£ 0(m;), Vye It
= 7 loiy ¢ IT.

i.e. T'f contains no elements conjugate to . In I'* all elements of finite order

are conjugate to some of. Hence, I'f is torsion free. The result now follows

since, in I' all elements of infinite order are translations.

The above proposition implies the following corollary.
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Corollary 4.1 Let 7 : X — P! be as in above proposition. Then, deg 7 is

divisible by [['t : L].

Proof: By the above proposition, deg # = [['* : I'f] and ['¥ € L Cc I't. Since
[T T} =[*: L)L : T{] (4.23)

the result follows.

In the following discussions we will use the following known results.
1) For 7 : X — Y a connected covering of degree n, G = m;(Y") acts transitively
on an n-element set N. To this covering, there corresponds the subgroup H C G
of index n. H = G, where G, is the stabilizer of an element y € N [10].
2) If G acts transitively on a set Y, then

Autg(Y) ~ Ng(G,)/G, (4.24)

where Ng(G,y) is the normalizer of Gy, and G, denotes the stabilizer of y € Y

[10].
3) Let L, denote a sublattice of lattice L of index n. Then
#{L,CL : [L:L)=n}=> d=6d) (4.25)
din
[see, 12].

The following proposition gives the number of Eisenstein coverings in

parabolic case.

Proposition 4.4 The FEisenstein number of ramified connected coverings
7: X — P! of degree nu, ramified over k points y1,...,yr with equal ramifica-
lion indices m; in each fiber m=1(y;), mi’s satisfying (4.20) is given by

2 |Am| =134, (4.26)

n
X P K din

where p = [T+ (ma,...,my) : L], L:translation subgroup of I't(ma,...,mx).

Proof: Using proposition (4.3) and equality (4.24) we can write

(4.27)

2 |Aut7r| 2 [Np+(CF) : ]

mX —>P1 F+CF+
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where the summation on right side is over all torsion free subgroups I'f C I't
up to conjugacy of index nu.
Using np = [['t : Tf] = [[": L)L : Tf),[T* : L] = u,[L : Tf] = n (4.27) can

be written as

1 [t : T{]

e, D) TH)
1

=— > [[: N+ (1)) (4.28)
nH rtcr+

We have

> [IF : Np+(I11)] = #(torsion free subgroupsI'yt C I't 3 [T : T %] = nfd.29)
rfcr+

Since nu = [[T : Tf] = [[* : L][L : Tf),[TF : L) = u,[L : TF] = n (4.29) is

equal to
#L Tl [L:T11])=n. (4.30)

By (4.25), (4.30) is equal to 3>y, d = 6(d). And the result follows.

4.3.2 Disconnected coverings

We will explicitely describe the Eisenstein number of ramified coverings in
parabolic case. Hence we will give the proof of theorem 4 stated in chapter 1.

The following proposition shows the connection between connected and

disconnected coverings.

Lemma 4.1 The following equality holds

qdcg‘lr qdeg'/r e
2. |Autr| ki P> |Autr| (4.31)

mX —»]P] 7r:X—>IP1

where the summation on LHS is over all coverings w1 X — P!, the summation

on RHS is over all connected coverings 7 : X — P! .

Proof: Let X = {J; d;X;, X;: pairwise non-isomorphic connected components.
T|x, = m;, 7 : X; — P! connected covering. Then LHS of the equality is equal
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to
1

> 4" D : 4.32
n>1 1 |Aut7r| ( )
- T X —
degr=n

Since |Autw| = [1; |Autm;|%(d;)! , and degr =Y didegm; (4.32) can be written

as

q L]
—— 4.33
w,.xz_:,]Pl 1:‘[ | Aut;|%d;! (4.33)
ddegn
= H ! dpn? (4'34)
7r:X——>]P>1 20 IAUt l d
where last summation is over all connected coverings =. Since
ddcgﬂ' qdeg'rr
=exp|———] , 4.35
(; | Autr|4d! P |Aut7r|) (4:35)

the result follows.

Lemma 4.2 Let 7 : X — P’ denote connected ramified covering ramified over
k points yq, ...,y in P! with equal ramification indices m; in each fiber v~ (y;),
m;’s satisfying (4.20). Then the following holds

degm

q
= —— [ — 4.36
2, Auix] 3 losll =™ (4.36)

where w = [[*(my,...,mg) : L], L : translation subgroup of I't(mq,...,my).

Proof: Let N =nyu ,n > 1. Then

2

mX —»Pl

1
|Autr|’

(4.37)

=3 " >

A t
' u 7r| N X—»]P’l

where the summation is over all connected ramified coverings 7 as described

in statement, of degree N.
Using proposition (4.4), (4:37) can be written as

ZqN 1 Yod. (4.38)

d]n

Writing n = md, N = un , (4.38) is equal to

qumd

" E Z -2 > log(l —g¢*™). (4.39)

K m>1d>1 Hom>1
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Hence the result follows.

From lemma (4.1) and lemma (4.2) there follows immediately

Proposition 4.5 Let 7 : X — P' denote ramified coverings as described in
lemma ({.2). Then the following holds

Z qdegw 1

= x (4.40)
X P IAUtWI [H;:;(;l (l - qlm)] #

where p is as in lemma (4.2).

Hence, the following theorem is an immediate consequence of above propo-

sition using table for index [['t : L].

Theorem 4.5 The Eisenstein number of ramified coverings = : X — P! of
degree np, ramified over k points yi,...,yr, with equal ramification indices m;
in each fiber 77 (y;), mi’s satisfying (4.20), is given by
1 . :
> = coefficient at ¢" in |
. |Autr] h
mX—P
where p eN depends on the affine Cozeter group corresponding to the solution

of (4.20) more explicitely, for m;’s satisfying the case

(1-g")* (4.41)

s

1

a)p =2,
bi) p = 4,
bit) p = 6,
bii) p = 3.

4.3.3 Estimation of coeflicients

The above theorem gains interest if the coefficients on RHS can be evaluated.
It turns out that the function [[Tpz, (1— qk)]—T1 is closely related to Dedekind 5
function which was considered in Chapter 1. H.Rademacher and H.Zuckerman
found the Fourier coefficients of the modular form 7(z)~*" and gave the follow-
ing asymptotic formula [for details see, 8].

The modular form F(z) = n(z)~% admits for /m z > 0, the Fourier expan-

sion

F(z)= 5 {7+ 3 ang™} (4.42)

m=0
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where the asymptotics for coeflicients can be given as

(L)2r41 r(m_‘_l)

Putting n = m + 1 corollary immediatly follows

Corollary 4.2 Asymptotics for the coefficient at ¢* as n — oo in
[Tz, (1 = qn)]—Zr 1S given as
( ' )le1 l 4rn

JonEE — = exp(m T) . (4.44)

Example: The number p(n) of partitions of n has the generating function

1L, (1 Zp (4.45)

The above corollary for r = 1 gives the asymptotics for p(n) as

2n
p(n) ~ n\/_exp( \/:) (4.46)

Letting r = 5 in above corollary and combining with theorem (4.5) we get the

following corollary.

Corollary 4.3 The Eisenstein number of ramified coverings as described in

theorem (4.5) has the following asymptotic

1 (5h) % 2n

244 )
E ~ — 4.47
| Autr| o, P (W 3u)’ (4.47)

1r:X—+IPI

where p is as described in theorem (4.5).

Example: The Eisenstein number of ramified coverings 7 : X — P! of degree
6n, ramified over 3 points ¥y, y2, y3 with ramification indices 2,3 and 6 , equal

in each fiber has the following asymptotic

1 1 T
~_ T, 4.48
AE’ o [Autr] ~ 95 3% % exp(3vn) (4.48)

Proof: m; =2 ,my; = 3, my = 6 case. So u = 6. Applying the above

corollary gives the result.

Combining corollary (4.3) with theorem 1 in chapter 1, we get the following

theorem.
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Theorem 4.6 The following asymptotic formulae holds.

x(o3)* T 1 n
Z X(1)2 ~ 5’;—3?713 expﬂ'\/g (449)

X€S2n

X(UZ)X(JAi)Z s 3 T

Z x(1) Eaw . PTG (4.50)
x(o2)x(o3)x(06) T 5 T

~ 3 = n4 exp —+/n 4:’1

xgn x(1) 9% 3% pyVn (4.51)

X(U3)3 m 1 T \/_ ;
2 x(1) 9k 3t ne exp(g) 2n (4.52)
X€S3n 2 6

where o, is product of - cycles of length m.

Proof: The idea in each case is the same. Hence, we will give the detailed

proof of one case.

Proof of (4.51):

1) First, observe that applying theorem 1 in Chapter 1 for
)Y =P,

ii) Covering 7 of degree 6n, ramified over 3 points,

iii) Equal ramification indices in each fiber, with values 2,3 and 6,

gives

L |Ci||Ca ]G5 Z X(Uz)X(U:a)X(UG). (4.53)

; |Autz| — (6n!)? x(1)

X€Sen

2) By the above example we have

> o 2 : %CXP(I\/E)- (4.54)

rX-.]P’l IA’U,tﬂ" ~ 23 31zn 3
3) Using
6n)!

(6n)! .

ICZI = 32n(237’)| 9 (4‘06)
6n)!

|Cs| = (6nn), , (4.57)
(4.58)

and Stirlings formula n! ~ v/27n(2)" and combining with 1) and 2) the result

follows.
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Chapter 5

Asymptotic Formulae

As was explained in chapter 1 (1.4.2), the problem of estimating the number

of coverings with given ramification indices in some extend can be reduced to

estimation of characters.

In this chapter, we will consider asymptotics of characters x5(g) of S, under

the following conditions.
Let diagram 3 be given by by > b, > ... > b,, and the cycle structure of g

given by 141292 .. . n®" with fixed length of cycles. Suppose that

1) Diagram £ has fixed number of rows.

ii) Number of cells in each row increases as n — oo with fixed frequency, i.e.
% = f;, P;is fixed as n — oo.

iii) Lengths of all cyles in g € S, are coprime.
iv) Multiplicity of cycles in g € S, increases as n — oo with fixed frequency,

le %k = ay , o is fixed as n — oo.

5.1 Frobenius formula

Frobenius formula is used to compute the value of x4, an irreducible character

of S, corresponding to a Young diagram f as follows:

Introduce independent variables zy, ..., 2z, with m: number of rows in 3.

Define

s;=24...+2,,1<5<n, (5.1)
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Az, ..., zm) = [J(2: ~ ), (5.2)

i<g
§=(m—1,m—2,...,0), (5.3)
2P = hm=lbtme2 b (5.4)
Then
xp(g) = coefficient at 2°*¢ in AHS? i (5.5)

J

5.2 Reduction to contour integral

Evaluation of the value of x5(g) can be reduced to evaluation of some contour

integral.

By Frobenius formula xs(g) is the coefficient of some multivariable poly-

nomial. Hence, using generalization of Cauchy’s formula to multidimensional

case, (5.5) can be written as

1 Az, ... zp) 1 87
/II / Gz is? ) (56)
Z]=1

Xol9) = Gy A e BN

Under the conditions for g and # mentioned in the beginning of chapter, (5.6)

can be written in the form

1 Alzyy. .oy 2m) [3?1332...3#}“
xolg) = — / / - 5.7
5(9) (2m0)™ Jiz|=1 lml=1 20025 Lz |2 A (5.7)

where ay = agn , b; = Bin , ax, B; fixed as n — co.

5.3 Asymptotic analysis of contour integral

Let
F()) = /, _g(z)ezp(Mu(z))dz (5.8)

where z = (z1,...,2,) € C", dz = dz...dz, and 4" is an n-dimensional
smooth compact manifold. By the many dimensional method of steepest de-
scent, the asymptotics for F/(A) as A — oo is determined by the critical values
of w(z) i.e. by z,’s such that yw(z,) = 0 . The idea is to take integral in a
small neighborhood of critical point responsible of asymptotics. We have:
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Let maz,e,» Rew(z) be attained only at a point z, € 4™ such that yw(z,) #
0 and det Hess(w)|,=,, = det 62'25‘; 2=20 & 0. If g(2,) # 0, as A — oo there is

the asymptotic formula

FO) ~ ()} ———

Vdet Hess(w)].= exp(Aw(z0))g(z) , (5.9)

where

2
Hess(w) = ((')Z(;Dz) .
10%;

[For details, see 13].
In order-to use this argument for xs(g) write x5 in the form

P = x0(9) = g [ L oF)esplno(e)az (5.10)
where
z=(z1,...,2m) €C™, (5.11)
o) = ‘—“m——’";) =II0-2), (5.12)
Zaklog (sk) Z,B, log z; . (5.13)

k=1

The equation for the critical points of w(z) is of the form

k

Zk:kak ra—— =6, i=1,...,m. (5.14)

This equation has a lot of complex roots. But it turns out that the asymptotics

of integral is determined by positive real roots of this equation.

5.4 Asymptotic formulae

Let us state and prove our results.
The following theorem is crucial for the asymptotic formulae.

Theorem 5.1 The system

k
zZ; .
e e

has up to proportionality unique positive solution x = (1, T2y, Tm) ; T1 2
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Proof: Let z; = e , t; € R, pr = kax , Sppr = 1. Then (5.15) can be

written as

kt;
> - =fiji=12
T Tr—— e =1,2,...,m

and (5.13)
w(eh) = Z oy log(e* + . 4 eFtm) — Z,Bz i
k=1 =1

The proof may be dividen in two steps.
step 1: w is a convex function of t = (t1,...,tm),

le.

Hess(w Zatat ;Xi >0, VX, X;eR.

For z; = e%

9?
Hess(w Zakz e log(e kg4 ekt'")X X; .

k=1

It suffices to show that

62
t) = 1 b . th'X,'>O.
i ) %:atz(r)t] Og(e + +€ ) M —

After some computations we get

yieh X2 et X 2
Yieh 2 el

h(t) =
Let X denote mean value of X;'s w.r.t. ¢; = zet'? Then

=Y q(Xi— X)2>0

and equality only when X; = X, = ... =X, =X.

(5.16)

(5.17)

(5.18)

(5.19)

(5.21)

Hence Hess(w) > 0 is proved. We can conclude from this the followings.

1) Restriction of Hess(w) on the hyperplane 3-; X; = 0 is positive.

2) The mapping

0 (st (B ) = G )
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is locally invertible for 3-¢; = 0, f(t) = ¥p ax log(eF + ... + etm).
step 2: The mapping

Q:(z1y-02m) = (B, P2y -y Pm) , 2 >0, Zzizl (5.23)

is a homeomorphism between simplexes
Azz{zi : Zzizl,ziZO},
Ap={B; : Zﬂi=1, B: > 0}.
The prqof is by induction on m. By induction hypothesis
Qi (21,0 ,2i21,0,2ig1, - -, Zm) = (B, -+, Bic1,0, Bivty - -+ 5 Bm)
1s a homeomorphism V:. Hence the restriction of 2 to the boundary §
Qs : 64, — 6Ap

is a homeorphism between boundaries of simplexes. Hence, by Brauwer theo-
rem the map () is surjective. By part 2 of stepl §) is a local homeomorphism.
It turns out that the homeomorphism is global, sinceAg is simply connected.

And the result follows.

The above theorem is central in proving the following theorem.

Theorem 5.2 Let us consider a sequence of diagrams  such that by > by >

2 by, B = % fized, and a sequence of permutations g € S, with cycle
structure 1412°2 .. .n% such that ap = 2k is fized. If lengths of all cycles
involved in geS, are coprime, and B; # B; , 1 # j , asymptotics for xp(g)

as n — 00 1S given as:

@) /m z;
——m\/fl— ma-=) N — (5.24)

xs(g) ~ T =
(2mn)"7 i Ti' (i Hi

where T = (Ty,...,2y,)  is positive solution of the system (5.14)
w(z) = Y aplog(zf +...+ah) — Y Bilogz (5.25)
k i=1
and H;; is diagonal minor of order m — 1 of the quadratic form in variable dt;
n ™ zkdt? m zhdt;
Hess(w) = k? o ( = T = z)2) : (5.26)
) kz=; ‘ Ziaf ( Sy af
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Proof: The proof may be dividen in several steps.

First, recall that in section 5.3 we write xs(g) in the form

1
Xs(0) = o7 /|z,|=1"' /;zm|=1 g(2)ezp(nw(z))dz (5.27)

where
2= (21,...,2m) €C™, (5.28)
o) = el <TI0 - 3, (5.29)
w(z) = an; arlog(sk) — iﬂi log z; . (5.30)

1) Deformation of surface of integration. ‘
Let (¢™,e™,...,e™) = (z1,%3,...,Zn) denote the positive solution of (5.15).

Deforming the contour of integration, we get

1
= oo nw(z) ] .
Xﬁ(g) (27r2)m /IZ] |=efl /I‘Zm|=e_’_m g(z)e dz (5 31)

2) Asymptotics of integral depends on the positive solution.
By section 5.3 it suffices to show that for coprime lengths of cycles

MazRe(w(z)) on the contour |z]| = €™ is attained only at the positive so-

lution of (5.14).

Re(w(z)) = Y axloglai® + ... + zm"| = Bilog |z . (5.32)
k i

By triangle inequality,
o + .4zt < alf oz =+ eFm™ (5.33)

Equality is only for collinear z;*’s. i.ez; = €™ X, |A| =1 ,&*F =1Vk > oy #0.
But since k’s are coprime, equality is only when ¢; = 1. For all other z;’s on
the contour strict inequality occurs. Hence, only the positive solution of (5.15)
gives the maximum.

3) Passing to real varibles.

Let z; = €™t | —r <t; <m.t=(t1,...,tm). Then

1 T T eTj+itj nu(t) .
Xﬁ(g) = (27[')"" ‘/_7(- .. -/w H ]. b e‘r;“l'iti e dt . (034)

i<y

Let

Tj+it;
Fiy=1] (1 _ 6 ) ey (5.35)

eTititi
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Observe that

w(Az) = w(z),
9(A2) = g(z) .

In terms of %;, this means invariance under shifts ¢; — ¢; + a. Hence,
F(ty,...,tm)=F(t1 +a,...,tm+a); VaeR, (5.36)

so that F'(t) is constant on lines parallel to main diagonal t; = t, = ... =
tm; —7 <t < 7.

4) Asymptotics of the integral depends only of diagonal( set of critical points
of w). Hence, in a small neighborhood of main diagonal, asymptotically the

integral 1s equal to

(zﬂ / /F t)dldt ~ 2”\4_ F(t)dt (5.37)

where H is the hyperplane }°;¢, = 0 and L : lines orthogonal to H i.e. lines

parallel to main diagonal, 27 /m = length of main diagonal.

5) Prefinal formula.
We can apply (5.9) to [y F'(t)dt. Denoting the positive solution of (5.14) which

determines the asymptotics of integral by z = (z4,...,2zx) , (5.9) gives

/HF( )dt ~ (2:) & enw(”)H<1_%> det(wlt — (5.38)

1<

Hence ,

xp(g) ~ i \/—H< . ) 1 (5.39)

( i<y det w;; IH( )

where w;; = %.
t
6) Evaluation of det w;j|y(x).

Consider the quadratic form in variables dt;

Hess(w) =S aa:)(g ) g, dt; . (5.40)
i0t;

b

Using (5.21),

Hess = k?
ess(w) Zk: o T U izt
= Zh,'jdt,'dtj . (5.42)

i

ko7s 2 kg 2 kg \ 2
Tivd T+ Ty iy, _ (El Ti dt‘) J (5.41)
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Let

H = (Lij), (ki) = <6dtl:)8(:)) (5.43)

denote the Hessian matrix with eigenvalues A\; > ... > A,,. Since Hess(w) > 0
iff \; >0, Vi=1,...,m , by the first part in the proof of theorem (5.1)

Am = 0. Hence det Hess(w)|at, .. +dt,,=0 1 quadratic form with eigenvalues
M>...2 Anor and

det HBSS(W)Idt,+...+dtm=0 = A] .o /\m—l . (544)

AMAz ... Amo1 = 2 Hi; where H;; : principal minor of order m—1 of H obtained
by deleting 2'th row and z’th column of H. The result follows combining with

the preceding step.

Using the above theorem, we can get an asymptotic formula for dimensions

of irreducible characters of .5,,.

Corollary 5.1 The asymptotics for the dimension of the irreducible represen-

tation corresponding to diagram [ with different lengths of rows is

erH8) T...(1 — &
xp(1) ~ m_ln s~ 5) (5.45)
(27rn)T LV ;;'1/32 PN Bm
where H(B) = —Y; Bilog(f;) is the entropy function, B; = % for diagram

ﬁb]Zme

Proof: Notice that ¢g = 1 iff &y =1, ax = 0 Vk > 1. Hence, applying the

above theorem for g = 1 (5.14) can be written as

:;i =fi,1=1...,m. (5.46)
1=1 Z;
Hence we may take z; = ; and the positive root of system is (z1,...,2m) =
(Biy- .., PBm). Equation for w(z) may be written as
w(z) = log(B1+ ..., Pm) — D_ Bilog(h) . (5.47)
1=1

Since i, B = 1,

w(z) = — 3" filog(B:) i= H(B) (5.48)

1=1
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where H(f) is the entropy function. The quadratic form (5.26) is now equal

to

Z@dtz (3 ) (5.49)

1=1

= Zﬂzdtz Zﬁiﬂjdtidtj - (5.50)

It can be seen that all diagonal minors of the form are equal to ;... 8,,. Hence
Z:fﬂiz,/nu%...ﬁm. (5.51)

And the result immediately follows.

Observe that the above theorem fails when z; = z; for some 7, ;. Another
way of stating this is to say that it fails when diagram f has some equal rows.

In case of rectangular diagrams we could evaluate the asymptotics for xs(g)

using Selberg integral.

Remark 5.1 The Selberg integral [14] is given as

o2 > 2 m —m(y(m— 1 ]_
. Aot = (o) (20) HF T S D(L+i7) o)

oo o T +v)
where
z= (1, Zm), (5.53)
dz =dzy...dzp, , (5.54)
Afe) = [T(ai—,), (5.55)
I: Gam;; function . (5.56)

Theorem 5.3 Under the assumptions of theorem (5.2) for B and g, if lengths
of cycles involved in g are coprime and the diagram p is rectangular , i.e. all

rows are of the same length, then

(m) =z | J! (5.57)

where Y, o = 3, Yp k?oy =d.
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Proof: In the proof we will use some steps of the proof of theorem (5.2).
1) Chritical point.
Diagram f is rectangular iff #; = #, = ... = f3,,. Hence the solutions of (5.14)

can be taken as

Hence for z = (1,1...,1) (5.25) is equal to

1 1
w(z) =-logm, == o. (5.58)
d d =
2) Reduction to integral.
Using steps (1-3) of theorem (5.2) formy =...=7, =0
zl) ) & ) nw(t)
dt , 5.
Xﬁ g (27[' /—7r [w Zl .. -1 (O 59)

zj =€, (5.60)

Approximating w(t) by its Taylor expansion about z

1

w(t) ~ w(z) — §H(t) (5.61)

where H(t) is given by (5.42) for 2y =z, =... =2, =1 as

24 ...+ 82 i+ ..o+t \?
=Zk2ak[l+ +m—(1+ * )J (5.62)

- m m
Combining with step 4 of theorem (5.2) we have
/menw(-’v) / A(Zl, .. ,Zm) ~ZH(t)

. ~ 27 g 5.63
xs(9) 2m)y™=t Ju 2z ¢ ( )

where H is the hyperplane ¢t; + ¢, 4+ ...+, = 0.
3) Observe that A(z,...,2zy) is skew-symmetric w.r.t. z;’s and H(t) is sym-

metric w.r.t ¢;’s. i.e. for I = (¢1,...,%m) € Sm

A(ziyy. -y Zip) = sgn IA(21,. .., 2m) , (5.64)
H(ti,... ti,)=H(ty,...,tn) . (5.65)

Hence (5.63) can be written as
xp(g) ~

nw(z) _m=1 _ m-2 _ —n
@e__/ A(z1y. .y 2m) ,:E sgnlz,  z, e Zip ZH( t)dt(5 66)

(2r)m=tm! Ju e
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where the summation is over all permutations I € S,,. Noticing that

m—1 m—2 _

Z sgnlz;, =z, e Zip = A(21y -y Zm)
I1eS,

(5.66) for z; = e can be written as

e (@) =
xs(g) ~ / |A(t)[Pe T H g (5.67)

(2m)m— (2m)m=1m!

4) Computation using Selberg integral.
For t; + ...+ t,, = 0 we have,

H(t) = ;‘i—(tf +...+ 22, (5.68)
where d= > Kay . (5.69)
k
Hence
/H |A®t)2e7H Ot = /H |A(t)Pem (BHtim) gy (5.70)
Using Selberg’s formula in remark (5.1) fory =1, a = 2d
/°° /°° At gy = 21w ﬁ (5.71)
e e (n d)'z— =1
The integral
/ C / * A PeTHO 4t (5.72)

can be written by making change of coordinates as

/w / |A(t)] e’z?n"<‘2+ +im) dida (5.73)
H

where H' is the hyperplane h"'THﬂm = a. Putting t; :Z- —I——\;ﬁ (5.73) reduces

{0

- ~2 ~ 2
/ / '26—2"‘"‘1 (t1 ++tm +a2)d 'Z da , (574)
t1+.. +Lm—0

which is equal to

~2

2mm foiaipe A et V4] (5.75)
né 1+ Htm=0
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Combining (5.75) and (5.71),

—n d 2 !_;— me m
[ 1a@peE g = E’i(’f—)mzmT I (5.76)
H m (n d)T j=1

Combining ( 5.67) and ( 5.76) with (5.58) we get the final result.

Theorem 5.4 Let o be the unique positive root of (5.14), w(x) as in (5.25)
and B be diagram described as in theorem (5.2). Then

H(p) .

w(z) 2

The equality is only if all cycles are of the same length or diagram is rectangu-

lar.

Proof: We have

w(z) =) a log(zf + ...+ 2k) =Y Bilogz; . (5.77)
k i

Using Y, kax = 1, we can write

w(z) = Y oxllog(zy + ... + zk) =3 Bilogzl] . (5.78)
k

1

1) We will first prove the following

Fy, 92y ym) =log(ys + Y2+ ... + Um) — }:ﬂilogyi > H(p). (5.79)

Let y; = e%. Then

f(tl,...,tm) = ]og(et’ +...+6tm)—z,3,‘t,‘ . (580)

Extremum condition for f: gtff =0, Vi ie.

eh

e L o81)

therefore, f has an extremum at e% = Af;, A > 0. For y; = Ap;

f(yl,---,ym)=—Zﬂilogﬂi=H(ﬁ)- (5.82)
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And result follows.
2) Using first step, we get

w(z) > > o H(B). (5.83)
k
Since Y ap = 5, we get
w(z) > @ : (5.84)

3) In inequality ( 5.84) the equality occurs iff
¥ =X Bi, Ve st o 0.

a) If we have at least two different cycle lengths, i.e. a; # 0 and «, # 0 for
k # r, then

HEDW S
z; = AP,
implies
Ty =2T2=...= Iy
So
pr=p0=...=Pn,

i.e. the diagram (3 is rectangular. Conversely, if diagram is rectangular equality

directly follows.
b) If all cycles have the same length then kax = 1, &, = 0 for » # k. Then
(5.14) implies that =¥ is proportional to 8;, Vk such that cy # 0 and we have
equality. And the theorem is proved.
Combining the above theorem with corollary (5.1) the below corollary is im-

mediate.

Corollary 5.2 Under the assumptions of theorem (5.2) for g and 3, if the
diagram B is not rectangular and if all cycles involved in g are of different

length, then x(:‘)’) exponentially increases to co as n — oo.
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Chapter 6

Vanishing of normalized characters

Definition 6.1 The ratio ﬁ is called normalized character of character .

We are interested in limits of normalized characters of S, as n — oo. We

suppose that
i) number of cycles in g, € S, is fixed.
i) X(n) is any sequence of faithful characters of S, labelled by partitions A(n).

In this chapter we will give the proof of the following theorem.

Theorem 6.1 Under the conditions i) and ii)

XA(n)(gn) N .
——X)\(n)(]-) 0 (6.1)

as n — o0.

As will be seen, case of exterior powers and two row diagrams is essential in

the proof. Let us begin with exterior powers case.

6.1 Vanishing of normalized characters for exterior

powers

In this section we will give the proof of theorem for representations of .S, given

by exterior powers of standart representation.
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Notations
1) V; denotes the standart irreducible representation of S, of dimension n — 1.

2) xx denotes the character of A*V;.
3) For a representation G : V dety (A — g) is det(A] — A) where A is the matrix

of linear transformation gV'.

Recall: Standart Representation of S, Natural representation of S,
arises with the action of S, on C™ by permuting the coordinates , which is not
irreducible as the line spanned by the sum of the basis vectors , i.e.

< (1,1,..,1) >, is invariant with complementary subspace
‘/1 :{(xl,xz,...,zn) € CnZECL’i:O}

hence V = Vi@ < (1,1...,1) > . This n-1 dimensional representation Vj is

called the standart representation of S,.

Definition 6.2 The diagram below , denoted as [n — k,1*] , is called hook

diagram.

HEN

||

Figure 6.1: Hook diagram [n — k, 1¥]

Remark 6.1 A*V; corresponds to hook diagram [n — k,1¥] [15].

6.1.1 Character formula for exterior powers

By combinatorial way, we will give the formula for characters of exterior powers.

Lemma 6.1 For geSn, if  €1,€2,...,En1 are eigenvalues of g in Vy, then
xi(9) = ok(€1,€2, ..y En1) , where xi 18 the character of g in A\*Vi and oy

denotes k’th elementary symmetric function in variables €1,€3,...,€n-1-
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Proof: Follows immediately from the following:
i) The eigenvalues of g in A\* V] are ¢;,€;,...65, ;3 {t1,%2,-.,34) C {1,2,...,n —

1},

i1) The character of an element g in a representation V just means the sum of

eigenvalues of g in V.

Corollary 6.1 For g € S, Vi: standart representation of S, the following
holds

3
|
—

dety,(A—g) = Y (=1 xr(g)A*175. (6.2)

=
1l

Proof: Let g have eigenvalues €;, ¢, ...,6,_; in V;. Then

det(A—g) = ] 1 (A —¢;) (6.3)

1

.
fl

which is equal to
n—1
S AT (=D For(er, . - Enmt) - (6.4)
k=0
By lemma (6.1) xx(g9) = ox(e1,...,€n1). Hence we get
n—1
dety, (A — g) = 3 (=1)F xu(g)A" ' 7F . (6.5)
k=0
And the statement is proved.

Proposition 6.1 Let g € S, with cycle structure (1412%2 .. .n%) . Then

n Ai— ag
xk(g) = (—l)’Ic coefficient of Ak g ’=1)(‘_1 1) ) (6.6)

Proof: Proof may be divided in two steps.
i) For V: natural representation of Sy, g: full cycle in S, it can easily be seen

that
dety(A—g)=A"—1. (6.7)
Hence for ¢ having cycle structure (1%1,2%,...,n%)

dety(A —g) = (A= 1) (A2 = 1) ... (A" = 1)* . (6.8)
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ii) Since V = V1® < (1,1,...,1) >, eigenvalues of g in V; are those in V except
1. Hence

(A= 1) —1)% .. (A" — 1)
T . (6.9)

detVl()‘ - g) =

The proof now follows combining (6.9) with corollary (6.1)

The above proposition for ¢ = 1, a; = n, ax = 0, Vk > 1 immediatley

gives the following corollary.

Corollary 6.2 Dimension of A¥V} is given as

xx(1) = ( n: ) - (6.10)

Now, we can show that normalized characters of exterior powers vanishes as

n — oo.

Theorem 6.2 For X, character of m’th exterior power of standart represen-

tation, m#0, m #n —1

Xm(g)
Xm(l)

where g € S, with fited number of cycles.

—0as n— o0 (6.11)

Proof: Letg € S, with cycle structure dyd; ...dx, k: fixed. By proposition
(6.1)
(29 —1)(2%2 —2)...(z% — 1)

— (1™ n—1-m /
xm(g) = (—1)"coeff. of z in o)
Observe that for any coefhicient, say 2P
h—1)(z%=2)... (2% 1 d g 1)(z% 1) (2% +
coeff. at 2 in k)| ).z ) < coff. at 2P in (2 + )+ 1(2
(z—1) (z—1)
< di2"
Hence,
Xm(g) < 281 (6.13)
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Since d; < n, Vi

Xm(g) < n2*1. (6.14)

By corollary (6.2) we have

Xm(1) = ( ot ) . (6.15)

m

Hence

Xm(9) n2t1 :
(D) < (n—l ) . (6.16)

—1
( " ) is a polynomial of degree m of n.

m
For n —3 > m > 2 from ( 6.16) we get

xXm(9)
Xm(l)

— 0 (6.17)

as n — oo.
For m = 1;
xm is the character of standart representation of S, of dimension n — 1. Hence

xm(g) = (# trivial cyclesin g) —1. (6.18)

Since # of cycles in ¢ is k: fixed

Xm(g) <k-—-1. (6.19)
Hence
Xm(g) _ k-1 .
< .20
Xm(l) “n—=1" (6.20)
implying
Xm(9) —0,as n—o00. (6.21)
Xm(l)

For m = n—2, Xn_2 is the character of S, corresponding to conjugate diagram
of x1. S0, Xn-2(9) = (sign g)x1(g) g € Sn [16]. Hence, limit of normalized
character vanishes in this case also. And the theorem is proved.
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6.2  Vanishing of normalized characters for two row

representations

In this section, we will consider normalized characters of irreducible represen-
tations of S,, which corresponds to two row diagrams. For convenience, we call
such representations as two row representations.

Notations
1) Xap denotes the character of irreducible representation (a,b) of S, corre-

sponding to two row diagram a > b,a + b= n.
2) [a][b] denotes the permutation representation of S, induced by trivial rep-
resentation of 5, x Sy, with character x(qp)-

Recall
1) X[u)(g) : character of permutation representation of S, on the set I C

{1,2,...,n} such that #I = a.
And it is equal to

Xap(9) = #{I C{1,2,...,n}: §#l=a, gl =1} . (6.22)

2) Weyl’s determinant formula
Let (a, b) denote the two row representation corresponding to two row diagram

a>b,a+b=mn. Then
(a,b) = [a][b] - [a + 1][b—1], (6.23)

with character relation

Xab = X[a][t] — X[a+1][b~1] - (6.24)

For details, we refer the reader to [16].

6.2.1 Character formula for two row representations

As in exterior power case, we will give the formula for characters of two row

representations by combinatorial way.

The following lemma is central.

Lemma 6.2 Let g € S, with cycle structure di*dy? ... d%". Then, the following

formula holds

Xa)(9) = coefficient at 2 in (14 2%)* (1 +2%) ... (1 4 zim)en . (6.25)
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Proof: The proof is based on equality (6.22)

Xpi(9) = #{1 C{1,2,...,n} 1 #l =a, gl = I} (6.26)
Since gf = I iff I is a union of cycles of g, it follows that

Xai)(9) = #{krds + kodo + ... + knd, = a: 0 < k; < a;), (6.27)

which can be expressed as

X[ (9) = coeff. at 2 in (1 + 2%)% . (1 4 z%)°" . (6.28)
And the proof is completed.

Using Weyl’s determinant formula, we get the following proposition.

Proposition 6.2 Let g € S, as in lemma (6.2). Character x,(g) of two row
representation (a,b) of S,, a > b, a+ b= n is given by

Xap(g) = coeff. at 21 in (z — 1)(1 + 29) .. (1 4 2%)o~ . (6.29)

Proof: By Weyl’s determinant formula, we have

Xa(9) = X[al(e)(9) = Xfa41)p-1)(9) - (6.30)
By lemma (6.2) this is equal to

coeff. at z% in (14 24)% ... (14 2%)* — coeff. at z**!in (1 + 24)* ... (1 + 2*)6.31)

And the result follows.

Forg=1,dy =1, ay =n, ar = 0 Vk > 1 the corollary immediately follows

from the above proposition.

Corollary 6.3 Dimension of two row representation (a,b) , a > bya+b=n

Xa,ba):(;‘)_(ail) . (6.32)

Similar to exterior power case, we can show that limit of normalized char-

is given by

acters of two row representations vanishes as n — oo.
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Theorem 6.3 The normalized character of two row representation (a,b), a >

b, a+b=mn, of S, vanishes asn — oo. i.e.

Xebl9) 0 a5 n o oo (6.33)

Xa,b(l)

where g € S, with fired number of cycles.

Proof: Let g € S, with cycle structure dyd;...dyx, k: fixed. By proposition
(6.2) we have

Xap(g) = coeff. at z**Vin (z — 1)(1 +2%)... (1 4 2%). (6.34)
Observe that
any coeff. of (z — 1)(1 4 2%)...(1 + zd;‘) < 2k (6.35)
Hence,

Xap(g) < 281 (6.36)

Xaa(l) = (Z)_(aZ1) , (6.37)

which is a polynomial of n. Hence

By corollary (6.3)

M—)O,asn—»oo._ (6.38)

Xap(1)
Remark 6.2 If X' is conjugate diagram of X obtained by changing rows and

columns of A, then x,/(g) = signgx(g) [15]. Hence since two row diagrams
and two column diagrams are conjugate, the theorem above is still valid for two

column representations.

6.3  Vanishing of normalized characters for general

representations

We can now prove the theorem (6.1) for any irreducible representation of .5,,.
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Theorem 6.4 Let x(n) be an irreducible character of S, correponding to di-

agram A(n). Then

X/\(n)(gn) 50

, T — 00 6.39
X (1) (6-39)

if Xam)(1) — oo and g, € S, such that |g,| = k i.e. # of cycles in g, is equal
to k, k: fized.

Proof: Proof is by induction on k, i.e. on the number of cycles in g¢,.
1) For k= 1:

Then g, is a long cycle in S,,. Hence

0 if A(n) is not a hook diagram
. . ) . (6.40)
1 if A(n) is hook diagram

IXA(n)(gn)I = {

Hence

[x2(n)(9)] 1 .
X/\(n)(l) < (n—l ) y (6.41)

—1
where ( " ) = Xam)(1) for M(n) =[n —m,1™] .
m

——1———>0,asn—->oo (6.42)
n—1
(")
unless m = 0 or m = n — 1, i.e. unless x)(n) is trivial or sign character, but
this is impossible by assertion. Hence, for k = 1 the statement is true.
2) Assume the statement is true for |g,| < k.

i) If g, has more than one cycle with length increasing to co as n — oo:

Let

Gn = 9gpgq € Sp X 54 (6.43)
ptqg=n,|g| <k, |g| <k, pg—o0asn—oo (6.44)

By Littlewood-Richardson rule
X3 (9n) = 2243 Xi(9)X5(90) (6.45)

Y]
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where x; and x; are irreducible characters of S, and S, respectively. Hence

b (9n)l - i mislxi(90) x5 (90)| (6.46)
(L) = X magxa(1)x;(1) '

Generalizing the fact that for a,b,c,d > 0, Z‘_I_ij 1s between £ and % we get
[X2(n)(9n) < mas, |xi(gp)l1x4(g4)l , (6.47)
XA(n)(1) xi(1)x;(1)

Since |g,|, |g4| < k using induction hypothesis we get

[X7(n)(gn)]

—0asn — oo, 6.48
Xy (1) (6.48)
implying
M—)Oasn—)oo (6.49)
XA(ny(1)

unless x;(1) = x;(1) = L.
By Frobenious reciprocity theorem x () is a component of Indg;‘xgq (xi X X;)-

Hence,
a) If x; and x; are trivial characters then Indg;‘xsq(xz- X xj) contains only two

row characters. So x)(») is a two row character.

b) If x; is trivial character and y; is sign character, Ind‘;:xsq()(i X x;) contains
only exterior power characters. Hence x)(n) is exterior power character.

c) If x; and x; are both sign characters, Indg;‘xsq(xi X x;) contains only two

column characters. Hence, X)) is two column character.
By the previous section, in each case the statement is true. And the assertion

is proved.

i1) If g, has only one cycle with length increasing to co as'n — oo:
Let g, = gn-kgr € Sn—k X Sy where g, is a long cycle in S,_ and gi
be the rest, k: fixed. By second orthogonality relations if xi,...,x, denotes

irreducible characters of S, then

Z Ixi(gn)lz = ICSn(gn)l (6.50)

where |Cs,(gn)]| is the centralizer of g, € Sh.
Hence it follows that

X2 (9n)] < V/ICsn(gn)l - (6.51)
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Since Cg,(gn) C Ch—k X Si where C,_j : cyclic group of order n — k, we have
|Cs.(9)] < (n—k)k!. (6.52)

Combining with (6.51)
XAy (9n)| < cv/ne (6.53)

for some constant c.
For n > 5 the minimum dimension for any non-trivial character is n — L. So

Xamy(l) 2 n—1 (6.54)

Combining (6.53) and (6.54) we get

]X/\(n)gnl
2 — 5 0asn — o0 (6.55)
XAmy(1)

which implies
X0 g g m o oo (6.56)
Xam)(1)

And the theorem is proved.
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Chapter 7

Conclusion

We considered the connection between ramified coverings 7 : X — Y of Rie-
mann surfaces and characters of S,. In cases when the structure of covering
is known, we carried information on coverings to that of characters of S, and
get some explicit formulae for sums over characters of .S, involving Dedekind
n function. For carrying information on characters to coverings, we developed
asymptotic theory for characters of S, as n — oo under some restrictions. We
restricted ourselves to diagrams with bounded number of rows. Hence, our
results on asymptotics is not sufficient to get an estimation on the number of
coverings. So, asymptotic theory for characters of S, may be developed more.

Finally, we have shown that under certain conditions, normalized characters

;‘J(% of S, vanishes as n — oo.
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