Graph analytics accelerators for cognitive systems
dc.citation.epage | 51 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 42 | en_US |
dc.citation.volumeNumber | 37 | en_US |
dc.contributor.author | Ozdal, M. M. | en_US |
dc.contributor.author | Yesil, S. | en_US |
dc.contributor.author | Kim, T. | en_US |
dc.contributor.author | Ayupov, A. | en_US |
dc.contributor.author | Greth, J. | en_US |
dc.contributor.author | Burns, S. | en_US |
dc.contributor.author | Ozturk, O. | en_US |
dc.date.accessioned | 2018-04-12T11:03:13Z | |
dc.date.available | 2018-04-12T11:03:13Z | |
dc.date.issued | 2017 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | Hardware accelerators are known to be performance and power efficient. This article focuses on accelerator design for graph analytics applications, which are commonly used kernels for cognitive systems. The authors propose a templatized architecture that is specifically optimized for vertex-centric graph applications with irregular memory access patterns, asynchronous execution, and asymmetric convergence. The proposed architecture addresses the limitations of existing CPU and GPU systems while providing a customizable template. The authors' experiments show that the generated accelerators can outperform a high-end CPU system with up to 3 times better performance and 65 times better power efficiency. © 1981-2012 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:03:13Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017 | en |
dc.identifier.doi | 10.1109/MM.2017.7 | en_US |
dc.identifier.issn | 0272-1732 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37114 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/704476/ | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/MM.2017.7 | en_US |
dc.relation.project | Energy Efficient FPGA Accelerators for Graph Analytics Applications | en_US |
dc.rights | info:eu-repo/semantics/openAccess | * |
dc.source.title | IEEE Micro | en_US |
dc.subject | Parallel architectures | en_US |
dc.subject | Special-purpose and application-based systems | en_US |
dc.subject | Memory architecture | en_US |
dc.subject | Accelerator design | en_US |
dc.subject | Asynchronous executions | en_US |
dc.subject | Graph analytics | en_US |
dc.subject | Hardware accelerators | en_US |
dc.subject | Memory access patterns | en_US |
dc.subject | Power efficiency | en_US |
dc.subject | Power efficient | en_US |
dc.subject | Proposed architectures | en_US |
dc.subject | Cognitive systems | en_US |
dc.title | Graph analytics accelerators for cognitive systems | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Graph Analytics Accelerators for Cognitive Systems.pdf
- Size:
- 592.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version