Graph analytics accelerators for cognitive systems

dc.citation.epage51en_US
dc.citation.issueNumber1en_US
dc.citation.spage42en_US
dc.citation.volumeNumber37en_US
dc.contributor.authorOzdal, M. M.en_US
dc.contributor.authorYesil, S.en_US
dc.contributor.authorKim, T.en_US
dc.contributor.authorAyupov, A.en_US
dc.contributor.authorGreth, J.en_US
dc.contributor.authorBurns, S.en_US
dc.contributor.authorOzturk, O.en_US
dc.date.accessioned2018-04-12T11:03:13Z
dc.date.available2018-04-12T11:03:13Z
dc.date.issued2017en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractHardware accelerators are known to be performance and power efficient. This article focuses on accelerator design for graph analytics applications, which are commonly used kernels for cognitive systems. The authors propose a templatized architecture that is specifically optimized for vertex-centric graph applications with irregular memory access patterns, asynchronous execution, and asymmetric convergence. The proposed architecture addresses the limitations of existing CPU and GPU systems while providing a customizable template. The authors' experiments show that the generated accelerators can outperform a high-end CPU system with up to 3 times better performance and 65 times better power efficiency. © 1981-2012 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:03:13Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1109/MM.2017.7en_US
dc.identifier.issn0272-1732en_US
dc.identifier.urihttp://hdl.handle.net/11693/37114en_US
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/704476/en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/MM.2017.7en_US
dc.relation.projectEnergy Efficient FPGA Accelerators for Graph Analytics Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.source.titleIEEE Microen_US
dc.subjectParallel architecturesen_US
dc.subjectSpecial-purpose and application-based systemsen_US
dc.subjectMemory architectureen_US
dc.subjectAccelerator designen_US
dc.subjectAsynchronous executionsen_US
dc.subjectGraph analyticsen_US
dc.subjectHardware acceleratorsen_US
dc.subjectMemory access patternsen_US
dc.subjectPower efficiencyen_US
dc.subjectPower efficienten_US
dc.subjectProposed architecturesen_US
dc.subjectCognitive systemsen_US
dc.titleGraph analytics accelerators for cognitive systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Graph Analytics Accelerators for Cognitive Systems.pdf
Size:
592.37 KB
Format:
Adobe Portable Document Format
Description:
Full printable version