Selective photocatalytic CO2 reduction by cobalt dicyanamide
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Photocatalytic conversion of CO2 into chemical fuels is a promising approach to tackle carbon emission and global warming. Herein, we promote a cobalt dicyanamide coordination compound, Co-dca, for the first time, as a selective catalyst to reduce CO2 to CO in the presence of a ruthenium photosensitizer (Ru PS) under visible light irradiation. Co-dca was prepared by a facile precipitation method and characterized by Infrared, UV-Vis, XRD, SEM, TEM, and XPS studies. A series of photocatalytic experiments under various reaction conditions were performed to reveal the role of the PS, the scavenger, and the solvent in the selectivity and the activity of the photocatalytic process. We find that Co-dca exhibits an activity of 254 μmol h−1 g−1 and a CO selectivity as high as 93%.