Effects of thickness on the metal-insulator transition in free-standing vanadium dioxide nanocrystals

dc.citation.epage1767en_US
dc.citation.issueNumber3en_US
dc.citation.spage1762en_US
dc.citation.volumeNumber17en_US
dc.contributor.authorFadlelmula, M. M.en_US
dc.contributor.authorSürmeli, E. C.en_US
dc.contributor.authorRamezani, M.en_US
dc.contributor.authorKasırga, T. S.en_US
dc.date.accessioned2018-04-12T11:08:46Z
dc.date.available2018-04-12T11:08:46Z
dc.date.issued2017en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractControlling solid state phase transitions via external stimuli offers rich physics along with possibilities of unparalleled applications in electronics and optics. The well-known metal-insulator transition (MIT) in vanadium dioxide (VO2) is one instance of such phase transitions emerging from strong electronic correlations. Inducing the MIT using electric field has been investigated extensively for the applications in electrical and ultrafast optical switching. However, as the Thomas-Fermi screening length is very short, for considerable alteration in the material’s properties with electric field induced MIT, crystals below 10 nm are needed. So far, the only way to achieve thin crystals of VO2 has been via epitaxial growth techniques. Yet, stress due to lattice mismatch as well as interdiffusion with the substrate complicate the studies. Here, we show that free-standing vapor-phase grown crystals of VO2 can be milled down to the desired thickness using argon ion-beam milling without compromising their electronic and structural properties. Among our results, we show that even below 4 nm thickness the MIT persists and the transition temperature is lowered in two-terminal devices as the crystal gets thinner. The findings in this Letter can be applied to similar strongly correlated materials to study quantum confinement effects.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:08:46Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acs.nanolett.6b05067en_US
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/37288
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.nanolett.6b05067en_US
dc.source.titleNano Lettersen_US
dc.subjectArgon ion beam millingen_US
dc.subjectMetal−insulator transitionen_US
dc.subjectStrongly correlated materialsen_US
dc.subjectVanadium dioxideen_US
dc.subjectArgonen_US
dc.subjectElectric fieldsen_US
dc.subjectIon beamsen_US
dc.subjectLattice mismatchen_US
dc.subjectMetal insulator boundariesen_US
dc.subjectMilling (machining)en_US
dc.subjectSemiconductor insulator boundariesen_US
dc.subjectVanadiumen_US
dc.subjectArgon ion beamen_US
dc.subjectElectronic and structural propertiesen_US
dc.subjectQuantum confinement effectsen_US
dc.subjectSolid-state phase transitionen_US
dc.subjectStrong electronic correlationsen_US
dc.subjectStrongly correlated materialsen_US
dc.subjectUltrafast optical switchingen_US
dc.subjectVanadium dioxideen_US
dc.subjectMetal insulator transitionen_US
dc.titleEffects of thickness on the metal-insulator transition in free-standing vanadium dioxide nanocrystalsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Effects of Thickness on the Metal−Insulator Transition in FreeStanding.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
Description:
Full printable version