Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation
buir.contributor.author | Süzer, Şefik | |
dc.citation.epage | 466 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 462 | en_US |
dc.citation.volumeNumber | 50 | en_US |
dc.contributor.author | Ozkaraoglu, E. | en_US |
dc.contributor.author | Tunc, I. | en_US |
dc.contributor.author | Süzer, Şefik | en_US |
dc.date.accessioned | 2016-02-08T10:05:39Z | |
dc.date.available | 2016-02-08T10:05:39Z | |
dc.date.issued | 2009 | en_US |
dc.department | Department of Chemistry | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | Au and Au-Pt alloy nanoparticles are prepared and patterned at room temperature within the PMMA polymer matrix by the action of 254 nm UV light or X-rays. The polymer matrix enables us to entangle the kinetics of the photochemical reduction from the nucleation and growth processes, when monitored by UV-vis spectroscopy. Accordingly, increase of the temperature to 50 °C of the reaction medium increases the nucleation and growth rates of the nanoparticle formation by more than one order of magnitude, due to enhanced diffusion and nucleation at the higher temperature, but has no effect on the photochemical reduction process. Presence of Pt ions also increases the same rate, but by a factor two only. Similar photochemical reduction and particle growth take also place within the PMMA matrix, when these metal ions are subjected to prolonged exposure to X-rays, as evidenced by XPS analysis. Both angle-resolved and charge-contrast measurements using XPS reveal that the resultant Au and Pt species are in close proximity to each other, indicating the Au-Pt alloy formation to be the most likely case. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:05:39Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1016/j.polymer.2008.12.008 | en_US |
dc.identifier.eissn | 1873-2291 | |
dc.identifier.issn | 0032-3861 | |
dc.identifier.uri | http://hdl.handle.net/11693/22854 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.polymer.2008.12.008 | en_US |
dc.source.title | Polymer | en_US |
dc.subject | Nucleation and growth | en_US |
dc.subject | Photoreduction and photo-patterning | en_US |
dc.subject | X-ray photoelectron spectroscopy | en_US |
dc.subject | Electron spectroscopy | en_US |
dc.subject | Gold | en_US |
dc.subject | Gold alloys | en_US |
dc.subject | Growth (materials) | en_US |
dc.subject | Growth kinetics | en_US |
dc.subject | Ions | en_US |
dc.subject | Metal ions | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Nucleation | en_US |
dc.subject | Photoelectricity | en_US |
dc.subject | Photoelectron spectroscopy | en_US |
dc.subject | Photoionization | en_US |
dc.subject | Photons | en_US |
dc.subject | Platinum | en_US |
dc.subject | Platinum alloys | en_US |
dc.subject | Reaction rates | en_US |
dc.subject | Spectrum analysis | en_US |
dc.subject | Ultraviolet spectroscopy | en_US |
dc.subject | X rays | en_US |
dc.subject | Close proximities | en_US |
dc.subject | Contrast measurements | en_US |
dc.subject | Enhanced diffusions | en_US |
dc.subject | Higher temperatures | en_US |
dc.subject | Nanoparticle formations | en_US |
dc.subject | Particle growths | en_US |
dc.subject | Photochemical reductions | en_US |
dc.subject | Pmma matrixes | en_US |
dc.subject | Pt alloys | en_US |
dc.subject | Reaction mediums | en_US |
dc.subject | Room temperatures | en_US |
dc.subject | UV lights | en_US |
dc.subject | VIS spectroscopies | en_US |
dc.subject | Xps analyses | en_US |
dc.subject | X ray photoelectron spectroscopy | en_US |
dc.subject | Diffusion | en_US |
dc.subject | Nanotechnology | en_US |
dc.subject | Particle | en_US |
dc.subject | Photochemical degradation | en_US |
dc.subject | Polymer | en_US |
dc.subject | Polymethyl methacrylate | en_US |
dc.subject | Ultraviolet radiation | en_US |
dc.subject | X-ray analysis | en_US |
dc.title | Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation.pdf
- Size:
- 506.46 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version